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Abstract The continuous progress in the performance of supercomputers has made
possible the understanding of many fundamental problems in science. Simulation, the
third scientific pillar, constantly demands more powerful machines to use algorithms
that would otherwise be unviable. That will inevitably lead to the deployment of an
exascale machine during the next decade. However, fault tolerance is a major challenge
that has to be overcome to make such a machine usable. With an unprecedented number
of parts, machines at extreme scale will have a small mean-time-between-failures. The
popular checkpoint/restart mechanism used in today’s machines may not be effective at
that scale. One promising way to revamp checkpoint/restart is to use message-logging
techniques. By storing messages during execution and replaying them in case of a
failure, message logging is able to shorten recovery time and save a substantial amount
of energy. The downside of message logging is that memory footprint may grow
to unsustainable levels. This paper presents a technique that decreases the memory
pressure in message-logging protocols by only storing the necessary messages in
collective-communication operations. We introduce Camel, a protocol that has a low
memory overhead for multicast and reduction operations. Our results show that Camel
can reduce memory footprint in a molecular dynamics benchmark for more than 95 %
on 16,384 cores.
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1 Introduction

The persistent advance in supercomputing has made possible the exploration of many
fundamental problems in science. Methods that were once considered intractable are
now practical, thanks to the availability of well-established petascale systems. The
next step in the evolution of supercomputers, fueled by many performance-hungry
problems in computational science, will lead to the deployment of exascale machines
in the next decade. The computational power provided by extreme-scale systems is
considered a fundamental tool in extending the frontier of our knowledge of nature and
the universe. However, a threat glooms the future of supercomputing. The mere number
of components assembled in an exascale computer will dramatically decrease the
mean-time-between-failures (MTBF) of the system. Projections at exascale estimate
the MTBF will be measured in minutes [6,19,27]. Even today, large-scale systems
face frequent failures [5] and it is estimated more than 20 % of the utilization of the
machine is lost due to failures [9].

Fault tolerance will be an ineludible consideration for extreme-scale computing.
The traditional way to tolerate failures in high-performance computing (HPC) systems
is to use rollback-recovery techniques [10]. Checkpoint/restart is the most popular
strategy and consist in periodically saving the state of the system (checkpoint) to
rollback to the latest checkpoint in case of a failure. Although checkpoint/restart has
several available implementations [14,25,29], it is clear that this scheme alone will not
provide an effective resilient solution at exascale and beyond [12,23]. A promising
technique to revamp checkpoint/restart is to add message logging. By storing the
messages sent during an execution, it is possible to avoid a global rollback and instead
only rollback the crashed node. That way, the recovery time can be shortened [7] and
a substantial amount of energy can be saved [24].

Message-logging protocols require, in principle, to store every single message the
application sends. In case of a failure, the messages sent to the crashed node are
replayed. Storing messages create an additional memory overhead, something that
may become critical in view of the shrinking memory size per node of future archi-
tectures [27]. Avoiding excessive memory footprint in message-logging techniques is
imperative to leverage all its potential benefits. Past research has focused on general
strategies that group nodes and avoid logging messages internal to the groups [21,26].
Those strategies create a tradeoff between memory footprint and recovery cost. How-
ever, it is possible to design new message-logging protocols that reduce memory
pressure without increasing the recovery cost.

Collective communication operations, or simply collectives, are a fundamental
building block of parallel applications. Not only are these operations helpful in pro-
viding a more expressive construct for a program, but they are useful in improving
the scalability and performance of the code as well [28]. Collectives are common-
place in most scientific computing codes. In some cases, they may carry most of
the communication traffic. As an example, Fig. 1 shows the breakdown of the total
communication volume into three operations: multicast, reduction and point-to-point.
Figure 1a presents the split for LeanMD (a molecular dynamics benchmark), where
almost all the communication volume is transferred through either multicast or reduc-
tion. Figure 1b shows the division for OpenAtom (a quantum chemistry application),
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Fig. 1 Distribution of communication volume among types of communication operations in two particle-
interaction applications

where multicast, reduction, and point-to-point receive approximately, a third of the
communication volume each.

This paper aims to provide a general framework to decrease the memory footprint
of message logging protocols for collective-communication operations. We introduce
Camel, a mechanism that only stores the minimum amount of messages necessary to
replay a collective during recovery. It does not increase the recovery cost and minimally
interferes with a running message-logging protocol.

This paper makes the following contributions:

– An algorithmic description of simple causal message logging (Scmel), a tradi-
tional fault tolerance protocol on which Camel is based (Sect. 2).

– A formalization of collective-aware message logging (Camel), a method that
minimizes the memory overhead of message-logging protocols (Sect. 3).

– The design principles of Camel and its implementation in a scalable parallel
computing library (Sect. 4).

– An experimental evaluation of Camel with two representative applications and
on two supercomputing platforms using up to 16,384 cores (Sect. 5).

2 Background

2.1 Related work

Hursey and Graham [15] presented a proposal to build fault-tolerant collective commu-
nication operations on MPI. Their mechanism supports algorithm-based fault tolerance
(ABFT) based on a resilient implementation of MPI collectives. The programmer of
the fault-tolerant algorithm can incorporate the optimized implementation of resilient
collectives. A recent proposal in the MPI Forum addressed the need for resilient MPI
calls and, among other operations, defined MPI_Comm_validate_all that helps
a rank to recognize all failures in a communicator. Therefore, the application is aware
of the failure in different ranks. Hursey and Graham reviewed three different designs
for tree-based collectives. In the first approach, a rerouting technique would check
for a failed process before interacting with it and route around crashed processes in
a recursive fashion. The second method consists in a lookup-avoiding design that
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would remove the check for failures and calculate the relationships parent/child at the
end of MPI_Comm_validate_all. Finally, the third method uses rebalancing to
remove the check for failures and balance the tree for the collective call at the end of
MPI_Comm_validate_all. The third design provides the best performance and
a negligible overhead compared to the fault-unaware implementation. Our approach
markedly differs from theirs. The protocol presented in this paper aims to provide an
automatic solution for fault tolerance in collectives, without the intervention of the
programmer.

Bronevetsky et al. [4] presented a protocol for application-level coordinated check-
point that targets applications without global synchronization points. In their exten-
sion for collective communication operations, the checkpoint infrastructure is based
on an algorithm that creates a coordinated checkpoint similar to Chandy-Lamport
algorithm [8]. In their protocol, an initiator starts the checkpoint process and coor-
dinates the rest of the procedure. This protocol assumes the checkpoint calls are not
made in global synchronization points, hence the presence of special measures to log
messages and non-deterministic events during checkpoint. Recovery works properly
by replaying the necessary messages and reproducing all non-deterministic events.
Their algorithm finds two important consistent cuts. The first cut is composed by the
collection of local checkpoints of the processes. This cut forms a recovery line to
which all processes may roll back in case of a failure. The second cut is composed by
the points at which processes stop recording messages and non-deterministic events.
The algorithm makes strong claims about the consistency of both cuts. In particular,
there must not be any data flow from collectives crossing the second cut. Our approach
is based on synchronized checkpoints. Therefore, we removed all the complexity at
checkpoint time. In addition, we extend a full message-logging protocol that features
the benefits of faster recovery and low energy consumption.

This paper presents a message-logging protocol that minimizes the memory over-
head for collective communication operations. A different mechanism, named team-
based message logging [21,26], creates groups of nodes in the system (called teams)
and only logs messages crossing team boundaries. That way, if teams are created to
match the communication graph of the application, a substantial amount of the total
communication volume can be contained internal to the teams and does not need to
be stored. That scheme may apply to any implementation of collective communica-
tion operations. However, a failure in one node requires the whole team to roll back,
increasing the recovery cost. This paper presents a mechanism that decreases memory
pressure in collectives and does not increase the recovery cost.

2.2 System model

We define the system on which a parallel application runs as a setN of processes. Each
process stores a portion of the application’s data in its own private memory. Message
passing is the only mechanism to share information in the system. The channels that
connect processes are assumed to respect FIFO ordering. Therefore, messages between
same source and same destination can not be reordered.
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Processes fail according to the fail-stop model. After a process fails, it ceases all
activity and becomes unreachable. An incarnation number is associated with each
instance of a process. A failure is represented by a set F of failed processes. Differ-
ent fault tolerance protocols offer higher or lower resilience levels according to the
maximum size of set F they can handle. In any case, failed processes are replaced by
a new incarnation, keeping constant the size of set N . All processes in N have been
instrumented with a checkpoint function that dumps the state of each process to stable
storage.

2.3 Message logging

Rollback-recovery [10] is the most popular mechanism to build a fault-tolerant system
in HPC. Checkpoint/restart is the simplest implementation of rollback-recovery. It
consists in having all processes inN periodically storing their checkpoint. The set of all
checkpoints form a restart line from which the system can recover in case of a failure.
As execution progresses and processes take checkpoints, the number of restart lines
increases. Not every restart line will bring the system to a consistent state. For instance,
if there are in-flight messages crossing a particular restart line, it is not possible to
restart from that restart line relying exclusively on a set of checkpoints. Some extra
measures are needed to avoid a cascading rollback in such situations. If checkpoints are
uncoordinated among the processes, in-flight messages could be logged and replayed
during recovery. Alternatively, checkpoints can be coordinated among the processes,
guarantying a consistent restart line. This last option is an appealing one for most HPC
applications that already have global synchronization points. Triggering checkpoints
at those global synchronization operations creates a synchronized (and coordinated)
valid checkpoint for restart with no in-flight messages. In the rest of this paper, we
assume checkpoints are coordinated.

Checkpoint/restart requires a global rollback to recover from a failure. That leads
to an excessive recovery cost in terms of performance and energy consumption [24].
There are mechanisms that only require a local rollback, i.e. rolling back only those
processes in F . Message logging is one of those mechanisms. It requires, in principle,
to log all the application messages to replay them during recovery. Messages are
usually stored in the memory of the sender process [16]. By replaying the messages
sent to processes inF , a healthy process avoids to rollback and helps failed processes to
recover. To ensure a consistent state is reached after recovery, the recovering processes
must deliver all replayed messages in the same order as before the crash. Figure 2a
presents the typical location of the message-logging layer in a software stack. Starting
from the top, application messages are handled by a runtime system and later tagged
by the message-logging protocol. The final message is eventually transmitted through
the network. At the receiver side, the message-logging layer captures all network
messages and processes them before delivering them to the upper layers.

In addition to storing messages, a message-logging protocol must ensure that recov-
ery is consistent. An inconsistent state may be reached if a process waits for a message
that never comes. Such process is usually referred to as an orphan. For example, a
system with processes X and Y may generate an orphan if Y sends message m to
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Fig. 2 Message-logging infrastructure. The software stack has to be extended with an additional layer, and
the message header has additional fields

X , Y fails and rolls back, and during recovery Y does not send m to X . In that
case, X would be orphan. This is in fact possible, because Y may have sources of
non-determinism. Therefore, non-deterministic decisions must be safely stored and
provided to the recovering process to ensure a consistent recovery. Message recep-
tion is, in general, non-deterministic. In this paper, we will assume message reception
is the only source of non-determinism. A determinant is a piece of information that
records the non-deterministic information from a message reception. For message-
logging protocols, the determinant #m of a message m is usually composed of the
tuple #m = 〈sender, recver, ssn, rsn〉, where sender and recver are the IDs of the
processes exchanging message m. The sender sequence number (ssn) corresponds
to a unique number that identifies message m. The receive sequence number (rsn)
represents the order reception of message m. Figure 2b presents the structure of an
application message, showing the fields in the header that will be used to build a
determinant. More concretely, every application message will carry information about
source and destination (sender and recver ), the message identifier at the source (ssn),
the incarnation number of the source (inc), and potentially some determinants (dets).

The way in which a protocol handles determinants gives rise to several flavors
of message logging [2]. All protocols must guarantee a consistent state is reached
after a failure. One traditional family of message-logging protocols is known as the
causal variant [2]. A causal message-logging protocol ensures determinants are safely
stored if they causally affect other events in the system. For instance, upon reception
of message m on X , the determinant d, that the reception of m generates, does not
need to be stored at that point in time. Instead, it can be piggybacked on outbound
message from X and stored at the receivers of those messages. The number of copies
of determinant d that have to be stored in the system depends on the reliability of the
protocol (i.e. the maximum size of set F that can be tolerated). One particular group
of causal message-logging protocols is known as the Family-Based Protocols [1], or
Simple Causal Message Logging [20]. These protocols tolerate single-process failures,
i.e. |F | = 1. We will focus the theoretical presentation of the material on this type of
protocols.

2.3.1 Simple causal message logging

The most basic version of causal message logging [11] tolerates a single process
failure at a time [1] and requires all checkpoints to be globally coordinated [20]. We
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Table 1 Data structures used in
simple causal message logging
(Algorithm 1)

Name Type Description

ssn N Sender sequence number

rsn N Receive sequence number

rsnMap N × N → N Maps a process and an ssn to an
rsn

det Log 2D Storage of incoming determinants

det Bu f 2D Buffer of outgoing determinants

msgLog 2M Storage of outgoing messages

inc N Incarnation number

incMap N → N Maps a process to its incarnation
number

name this protocol simple causal message logging. Table 1 shows the fundamental
data structures required at each process to carry out all the operations of the protocol.
Let us name M the set of messages sent during the execution of the application and
D the set of determinants generated by those messages.

Each process keeps two scalars to identify messages: ssn uniquely identifies the
outgoing messages, while rsn assigns a reception order to the incoming messages.
Upon reception of a message m, a process associates the sender of m and its ssn with
the corresponding rsn and stores that mapping into rsnMap. If the received message
comes with piggybacked determinants, they will be stored in det Log. The determinant
created as the result of a message reception is temporarily stored in det Bu f and it will
be piggybacked in the next outgoing messages, until an acknowledgment has been
received. At that point, the determinant can be removed from det Bu f . Therefore,
remote determinants (created at other processes) are stored in det Log, while local
determinants (created by the process itself) are temporarily stored in det Bu f . Each
sent message will be stored in msgLog until the following checkpoint stage, when
message logs are emptied. Finally, the current incarnation of a process is kept in inc
and it will be incremented every time a process fails. In addition, a process keeps the
current incarnation of other processes in incMap.

The details of the simple causal message logging protocol, or Scmel, are shown in
Algorithm 1. The SendMsg procedure is executed at process X . It catches a message
from the runtime layer to the network layer (see Fig. 2a), and fills out the header
entries of the message depicted in Fig. 2b. The counter ssn has to be increment with
each message submission to make sure each message has a unique identifier. Before
the message gets effectively sent through NetSendMsg, the message is stored into
msgLog. The ReceiveMsg procedure presents the more complex case of message
reception. The first step is to check for a message that should not be delivered at that
point in time. The function OutOfOrder checks for multiple conditions under which
the message should be held in an out-of-order queue or should be discarded. More
specifically, an old message comes from a process Y has an incarnation number lower
than the current incarnation number of Y . A duplicate message is a message that has
already been received. Both old and duplicate messages have to be suppressed, and
they appear in different scenarios during failure and recovery of processes. A message

123



Camel: Collective-aware message logging 2523

can also be received out-of-order if it has an rsn already assigned, but the receiving
process is behind that number. This may occur during recovery when messages may
overrun earlier messages and reach the destination out of order. For those messages,
a special queue usually stores and delivers them at the appropriate point in time.
If a message is successfully received, it receives a unique rsn, a determinant for its
reception is generated and the determinants it carries are stored. An acknowledgment is
sent for those determinants. The ReceiveAcks procedure removes the acknowledged
determinants from det Bu f and stops its replication through the system.

Algorithm 1 Scmel: Simple causal message logging protocol
1: procedure SendMsg(msg, recver)
2: msg.sender ← X � Adds sender
3: msg.recver ← recver � Adds receiver
4: msg.ssn ← Increment(ssn) � Updates ssn
5: msg.inc ← inc
6: msg.dets ← det Bu f � Piggybacks determinants
7: msgLog ← msgLog ∪ {msg} � Stores message
8: NetSendMsg(msg, recver)
9: end procedure
10: procedure ReceiveMsg(msg)
11: if OutOfOrder(msg) then return � Checks for out-of-order
12: end if � messages
13: rsnMap(msg.sender,msg.ssn) ← Increment(rsn) � Updates rsn
14: det Bu f ← det Bu f ∪ {〈msg.sender, X,msg.ssn, rsn〉} � Creates determinant
15: det Log ← det Log ∪ msg.dets � Adds remote determinants
16: NetSendDetAck(msg.dets,msg.sender)
17: ProcessMsg(msg)
18: end procedure
19: procedure ReceiveDetAck(dets)
20: det Bu f ← det Bu f \ dets � Removes determinants
21: end procedure
22: procedure Checkpoint( )
23: det Log ← ∅ � Empties remote determinants
24: det Bu f ← ∅ � Empties local determinants
25: msgLog ← ∅ � Empties message log
26: StoreCheckpoint() � Creates a restart line
27: end procedure
28: procedure Failure(Y )
29: dets ← ∅
30: Increment(incMap(Y )) � Updates Y ’s incarnation
31: for all det ∈ det Log do � Collects all determinants
32: if det.recver = Y then � bound to Y
33: dets ← dets ∪ {det} � in det Log
34: end if
35: end for
36: NetSendDets(dets, Y )
37: Barrier() � Global synchronization
38: for all msg ∈ msgLog do � Collects all messages
39: if msg.recver = Y then � bound to Y
40: NetSendMsg(msg, Y ) � in msgLog
41: end if
42: end for
43: end procedure
44: procedure ReceiveDets(dets)
45: for all det ∈ dets do � Receives determinants
46: rsnMap(det.sender, det.ssn) ← det.rsn � and populates rsnMap
47: end for
48: if AllDets() then
49: Barrier() � Global synchronization
50: end if
51: end procedure
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A process failure is handled by various procedures. The Checkpoint procedure
assumes the checkpoint call is globally coordinated and empties all data structures
holding determinants and messages. The checkpoint is assumed to be stored in a
safe place, such as the file system or the memory of a different node. When the
system detects process Y has failed, it will find a spare node to reinstate process
Y using its latest checkpoint. The system will also call procedure Failure on all
other processes. The call of Failure will increase the incarnation number for Y
and proceed to send all determinants related to Y and messages bound to Y in two
phases. Once all determinants have been received by Y , the messages bound to Y will
be sent. Procedure ReceiveDets presents the counterpart in the recovery process.
Process Y will be receiving determinants from other processes and it will store them
into rsnMap. Once it has a response from all other processes, it will call the barrier
to start the reply of logged messages. The global barrier may be replaced by a more
efficient mechanism that separates the determinant collection from the message replay.

2.3.2 Theoretical formulation

To formalize the property a message-logging protocol should enforce, we provide the
traditional definition of Dep and Log sets [2].

Definition 1 (Depend set) The set of all processes that reflect the delivery of message
m, denoted by Dep(m), contains the destination of message m and any other process
that has delivered a message sent causally after the delivery of m.

Dep(m) =
{
X ∈ N

∣∣∣∣ (X = m.recver) ∧ deliverX (m) ∨
∃ m′ : deliverm.recver (m) → deliverX (m′)

}

Definition 2 (Logging set) The logging set of a message m, denoted by Log(m),
contains all processes that have stored a copy of the determinant of m.

Log(m)=
{
X ∈N

∣∣∣∣ (X = m.recver) ∧ deliverX (m) ∨
∃ m′ : (

deliverm.recver (m) → deliverX (m′)
) ∧ #m∈m′.dets

}

To ensure a consistent recovery, a message-logging protocol must avoid the creation
of orphan processes. We provide the formal definition of an orphan process [2] and
specify the non-orphan property.

Definition 3 (Orphan process) A process X becomes orphan after the failure of
processes in set F if the following condition holds:

(X ∈ N \F) ∧ (∃ m : X ∈ Dep(m) ∧ Log(m) ⊂ F)

Property 1 (No-orphan execution) A consistent recovery produces a no-orphan exe-
cution:

∀m ∈ R : Dep(m) �= ∅ �⇒ Log(m) �⊂ F

where R is the set of replayed messages.
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Theorem 1 (Correctness of simple causal message logging) The Scmel protocol
detailed in Algorithm 1 complains with Property 1 by creating no orphan process
during recovery.

Proof Let us proceed by contradiction. Negating Property 1 is equivalent to:

∃m ∈ R : Dep(m) �= ∅ ∧ Log(m) ⊂ F

which means there is at least a message m in the set of replayed messages and there is
at least a process X that depends on that message, but its corresponding determinant
is not available. That is, X ∈ Dep(m), but Log(m) ⊂ F . Since |F | = 1, let us call
Y the only failing process, or F = {Y }. By Definifition 3, we have X �= Y . Using
Definition 1, we have to consider two cases with respect to X :

• Case 1, (X = m.recver) ∧ deliverX (m). In this case, X is the original receiver
of the message and, by Definition 2, X ∈ Log(m). Therefore, it is not possible to
have Log(m) ⊂ F because X survives the failure of Y . ⇒⇐

• Case 2, ∃ m′ : deliverm.recver (m) → deliverX (m′). Let us assume Z =
m.recver . Therefore, Z ∈ Log(m) by Definition 2. If Z �= Y , then Z �∈ F
and Log(m) �⊂ F . On the other hand, if Z = Y we have to demonstrate that there
is at least one process, other than Y , storing a replica of #m. Let us assume there is
a message chain of length n connecting the reception of m at Y and the reception
of m′ at X . We will proceed by induction on n. For the base case, n = 1, either
Y piggybacked #m on m′ to X , in which case X ∈ Log(m), or Y received the
ACK from process W that #m was safely stored. In either case, there is at least
one process that survives the crash and Log(m) �⊂ F . For the inductive step, we
assume Log(m) �⊂ F is true for n − 1. If the message chain is size n, then we are
more than certain #m is safely stored, because the inductive hypothesis tells us
that by the time the message chain reached the previous hop, it was size n − 1 and
Log(m) �⊂ F . One more hop in the message chain to reach X does not change
that statement. ⇒⇐

��

3 Collective-aware message logging

3.1 Intuitive presentation

The increase of the memory footprint is the major concern of message-logging proto-
cols. Fortunately, collective-communication operations present opportunities to sig-
nificantly reduce the memory pressure of such protocols. We will focus the discussion
on two prevalent operations in large-scale parallel computing: multicast and reduc-
tion. Intuitively, a multicast message should not have more than one copy stored in
the message logs. Even when a multicast message reaches potentially many processes
by virtue of being replicated many times, only one replica in the system is necessary
to store to guarantee consistent recovery. A reduction operation involves several mes-
sages from different processes. But, once the reduction has been finished, not all the
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Fig. 3 Two strategies to implement collective-communication operations

contributing messages have to be stored. In particular, if messages are agglomerated
along the way to the root of the reduction, partial contributions are no longer needed
if the last contribution messages are safely stored.

The easiest way to understand the multicast and reduction operations is by con-
sidering its serial implementation. For instance, a multicast from a source to many
destinations is nothing else than a sequence of messages from the source to each
destination. Similarly, a reduction from many sources to a common destination is
nothing else than a sequence of messages from each source to the same destination.
Figure 3a illustrates these ideas with a system having processes R, S, . . . , Z and being
R the source of a multicast or the destination of a reduction. This implementation of
multicast and reduction operations allows the use of any traditional message-logging
protocol. That is why popular message-logging implementations in HPC have used
this strategy [3,7,13]. One advantage of the serial implementation is that it permits a
multicast operation save only one copy of the message at the source. The same can
not be said about a reduction operation.

The downside of a serial implementation is its scalability. Very quickly, the source
in the multicast or the destination in the reduction becomes a bottleneck and large
scaling is not feasible. Figure 3b presents a tree-based implementation for collective
operations. This alternative increases scalability and enables parallelism, but presents
a challenge for message-logging protocols. A collective operation can run on a span-
ning tree using regular message-logging protocols, but they can not avoid saving
unnecessary copies of certain messages. For example, a multicast on the spanning
tree of Fig. 3b would require the same message to be stored four times (at processes
R, S, T , and X ). The memory-reducing advantage of the serial implementation is lost.
A goal of Camel, the message-logging protocol introduced in this section, is to use
a spanning tree and store a multicast message only once. Similarly, a reduction on
the spanning tree of Fig. 3b using regular message logging would require the storage
of eight messages. However, once the reduction is finished, only two messages are
necessary to store (the ones reaching the root of the spanning tree). Camel aims to
provide a mechanism that only stores the contributing messages reaching the root in
a reduction. In a nutshell, Camel extends the traditional message-logging protocols
and stores the minimum number of messages necessary to provide a correct recovery.

In designing Camel, it is crucial to understand the different failure scenarios and
how collective-communication operations can be reproduced. Let us start with a multi-
cast and a failure that occurs before the multicast message reaches all the destinations.
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Imagine a case in Fig. 3b where a multicast message from R has reached all processes
but Y and Z . Now, if process W fails, it will not be able to receive the multicast
message from T , because multicast messages are not stored at intermediate nodes as
in regular message-logging protocols. The original sender of the multicast message,
R, will be the only one retaining a copy of the message and it will provide it directly
to W . If it is process X the one failing, then the question is how processes Y and Z
will receive the multicast message. Once again, during recovery, process R will send
the message to X , and X will forward the message to Y and Z . Finally, if R fails
during a multicast operation, then such operation must finish. Therefore, processes Y
and Z will not drop the multicast message, even if it comes from a sender with an old
incarnation number. Multicast operations are thus atomic, once started they must be
completed.

Similarly, a reduction operation require special considerations. In the same system
of Fig. 3b, a reduction with root R is being carried out when a failure happens. Let
us assume the contributing messages have arrived at S and T , but not R. If process
T fails, then it will not be able to send the final contribution to R unless its children
store copies of the contributing messages. Therefore, we will require all processes
to temporarily store reduction messages until an acknowledgment confirms that a
particular reduction has been finished. The reduction messages from S and T to R
must be kept all the time as they are necessary to recover R. If instead of failing T , it
is X that fails, the same mechanism will ensure the children of X send the messages
again. Upon reception, X will send the contribution to T . This message is a duplicate
and can easily be discarded by the standard mechanism of message logging. Finally,
to recover any process, the root of every group will provide a reduction number that
will determine which reduction messages are old and should be discarded.

3.2 Algorithmic description

The formalization of the ideas presented above is called collective-aware message
logging (Camel). The design of Camel is influenced by the functionality of each
layer in Fig. 2a. More specifically, the runtime layer interacts with the message-logging
layer through a set of functions. The first group of functions is related to the structure
of the spanning tree. We assume a group G of processes is formed at the runtime
layer through some calls from the application. The runtime layer, however, exposes
the spanning tree of any group G to the message-logging layer. In particular, the
message-logging layer at process X can query the runtime layer about the parent of
X , the children of X , and the root of the spanning tree of group G. This functionality
will be represented by a collection of data structures. The second set of functions in
the interface between the runtime and the message-logging layer are concerned with
the execution of a reduction. When several contributing messages reach a particular
process, they will be merged by functions provided by the runtime layer. We make
a subtle distinction between accumulate messages, and agglomerate messages. The
former refers to merely collecting the messages, whereas the latter represents the
construction of a consolidated message from the individual contributions. Thus, a
process that stands at an intermediate node in the spanning tree of a group during a
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Table 2 Additional data
structures used in Camel

(Algorithm 2)

Name Type Description

rootMap 2N → N Maps a group to its
corresponding spanning
tree root

parentMap 2N × N → N Maps a group and a process
to its parent process in
that group

childrenMap 2N × N → 2N Maps a group and a process
to its children in that
group

redSsnMap 2N → N Maps a group to a reduction
ssn

redRsnMap 2N × N × N → N Maps a group, a process,
and an ssn to a reduction
rsn

reduction will accumulate the messages from its children (and itself), and once all
messages have been received, it will agglomerate them and forward the consolidated
message to its parent.

An extension to the message header in Fig. 2b is necessary to identify the particular
group a collective message belongs to. Therefore, a message header will contain a
group field that uniquely identifies a set of processes. Similarly, a determinant will
include a new field for the group. The reception of a reduction message will be associ-
ated with determinant 〈sender, recver, group, ssn, rsn〉. Note that regular messages
do not require a group identifier.

Table 2 presents a list of the data structures in each process that represent part of
the interface between the runtime and the message-logging layer. A group G rep-
resents a group of processes in N , therefore G ∈ 2N . Each group G will have an
associated spanning tree. The data structures rootMap, parentMap, and childrenMap
associate a group with a root process, the parent, and children in the spanning tree,
respectively. Each process will hold two additional data structures to keep track of
reduction operations. The redSsnMap maintains a sender sequence number for each
reduction operation in each group. Therefore, a particular process can determine how
many contributions it has made to a particular group. Finally, redRsnMap stands for
reduction receive sequence number map and it is used only at the root of a reduction.
It associates a reception sequence number with a sender (one of its chidren in the
spanning tree for the particular group), a group and a reduction number.

Camel extends Algorithm 1 by handling messages of collective-communication
operations in a way that minimizes the amount of memory in the message logs. The
protocol is presented in Algorithm 2. Auxiliary functions for Camel are listed in
Algorithm 3. We assume a multicast or a reduction message has a flag that allows the
runtime system decide whether to call the regular message methods or the collective-
aware ones. For instance, in case of a message emission, the runtime system will check
that flag to call either SendMsg or SendMulticastMsg. The notation msg indicates
that the identifier of the message is being transmitted, and not the message itself.
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Algorithm 2 Camel: Collective-aware message logging
1: procedure SendMulticastMsg(msg, group)
2: msg.sender ← X � Adds sender
3: msg.group ← group � Adds receiver
4: msg.ssn ← Increment(ssn) � Updates ssn
5: msg.inc ← inc
6: msg.dets ← det Bu f � Adds determinants
7: msgLog ← msgLog ∪ {msg} � Stores message
8: SendMsgToChildren(msg)
9: end procedure
10: procedure ReceiveMulticastMsg(msg)
11: if OutOfOrder(msg) then return � Cheks for out-of-order
12: end if � messages
13: rsnMap(msg.sender,msg.ssn) ← Increment(rsn) � Updates rsnMap
14: det Bu f ← det Bu f ∪ {〈msg.sender, X,msg.ssn, rsn〉} � Creates determinant
15: det Log ← det Log ∪ msg.dets � Adds remote determinants
16: NetSendDetAck(msg.dets,msg.sender)
17: ProcessMsg(msg)
18: msg.dets ← ∅ � Removes piggybacked determinants
19: SendMsgToChildren(msg)
20: end procedure
21: procedure SendReductionMsg(msg, group)
22: msg.sender ← X � Adds sender
23: msg.group ← group � Adds group
24: msg.ssn ← Increment(redSsnMap(group)) � Updates redSsnMap
25: msg.inc ← inc
26: VerifyReductionMsg(msg)
27: end procedure
28: procedure ReceiveReductionMsg(msg)
29: if OutOfOrder(msg) then return � Checks for out-of-order
30: end if � messages
31: if X = rootMap(msg.group) then
32: redRsnMap(msg.sender,msg.group,msg.ssn) ← Increment(rsn) � Updates redRsnMap
33: det Bu f ← det Bu f ∪ {〈msg.sender, X, group,msg.ssn, rsn〉} � Adds determinant
34: end if
35: det Log ← det Log ∪ msg.dets � Adds remote determinants
36: NetSendDetAck(msg.dets,msg.sender)
37: msg.dets ← ∅ � Removes piggybacked determinants
38: VerifyReductionMsg(msg)
39: end procedure

FunctionsSendMulticastMsg andReceiveMulticastMsg in Algorithm 2 deal
with emission and reception of multicast messages. The former is a straightforward
extension of the regular message send. The latter shows the creation of a regular deter-
minant, and the forwarding of the message down the spanning tree. However, message
copy is avoided at the intermediate nodes of the spanning tree. Once a multicast mes-
sage arrives at some process, function OutOfOrder checks whether the message is
valid or not. This verification process includes checking whether the message is a
duplicate or is old. In the case of multicast messages, because the root relies on the
spanning tree to deliver the message, old messages are not discarded.

Function SendReductionMsg tags the message with the group ID and the cor-
responding rssn. Then, it calls VerifyReductionMsg, which is a generic function
that checks whether the reduction message is ready to be propagated up in the span-
ning tree. Algorithm 3 presents the implementation of VerifyReductionMsg. If the
reduction message is not ready, it accumulates the new contribution and leaves the
forwarding for a future call. Otherwise, it agglomerates all contributing messages and
submits the reduction message. It will temporarily store the reduction message. Once
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the reduction has been completed, copies of the reduction messages will be eliminated,
except for the direct children of the reduction root. Function ReceiveReductionMsg

receives a contributing message and generates a determinant only at the root of the
spanning tree. It also calls VerifyReductionMsg to complete the execution of the
reduction.

Algorithm 3 Auxiliary Camel functions
1: procedure SendMsgToChildren(msg)
2: for all recver ∈ childrenMap(msg.group) do
3: msg.recver ← recver � Updates receiver
4: NetSendMsg(msg, recver)
5: end for
6: end procedure
7: procedure VerifyReductionMsg(msg)
8: if ReductionReady(msg) then
9: msg ← Agglomerate(msg) � Consolidates message
10: msg.sender = X � Updates sender
11: if X = rootMap(msg.group) then
12: ProcessMsg(msg)
13: SendMsgAckToChildren(msg)
14: else
15: msg.recver ← parentMap(msg.group) � Updates receiver
16: msg.inc ← inc
17: msg.dets ← det Bu f � Piggybacks determinants
18: msgLog ← msgLog ∪ {msg} � Stores message
19: NetSendMsg(msg, parent)
20: end if
21: else
22: Accumulate(msg)
23: end if
24: end procedure
25: procedure SendMsgAckToChildren(msg)
26: for all recver ∈ childrenMap(group) do
27: NetSendMsgAck(msg, recver)
28: end for
29: end procedure
30: procedure ReceiveMsgAck(msg)
31: group ← msg.group � Updates group
32: parent ← parentMap(group)
33: if parent �= msg.sender then
34: msgLog ← msgLog \ msg � Removes message
35: end if
36: for all recver ∈ childrenMap(group) do
37: NetSendMsgAck(msg, recver)
38: end for
39: end procedure

3.3 Formal proof of correctness

We prove the correctness of Camel algorithm in two steps. First, we show all required
messages are available in the message log of surviving processes. Second, we demon-
strate there are no orphan processes after a failure.

Lemma 1 (Availability of replayed messages) All required messages are available
during recovery with Camel protocol.

Proof The only messagesCamel handles differently than traditional message-logging
protocols are multicast and reduction messages. Therefore, we will show both those
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types of messages are available during recovery. In the first case, a multicast message
m received by a failed process X is always available at the root Y of the spanning
tree for m. Therefore, a recovering X will have Y replaying the message, regardless
of whether Y directly sent a message or not to X before the failure. As for reduction
messages, these are temporarily stored until the reduction is finished. If X fails and a
reduction is ongoing, the children of X will replay the messages. In any other case, X
will not need the contributing messages because it will advance its current reduction
sequence number for each group to the latest. If X happens to be the root of a reduction,
its children will store the contributing messages. ��
Theorem 2 (Correctness of Collective-Aware Message Logging Protocol) The
collective-aware message logging (Camel) protocol detailed in Algorithm 2 com-
plains with Property 1 by creating no orphan process during recovery.

Proof We will proceed by contradiction. Let us assume there is an orphan process, in
other words:

∃m ∈ R : Dep(m) �= ∅ ∧ Log(m) ⊂ F

Message m belongs to one of the three classes of messages: regular, multicast, or
reduction. We analyze each case separately.

• Case 1 (regular message). Theorem 1 guarantees there are not orphan processes
for regular messages.

• Case 2 (multicast message). This case is analogous to the regular case, because
other than the storage of the message, multicast messages are handled as regular
messages at the receiver.

• Case 3 (reduction message). To have X ∈ Dep(m), the whole reduction has to be
finished. Therefore, X ∈ Dep(m̂), where m̂ is one message reaching the root of the
reduction tree. Intermediate messages are irrelevant for consistency of recovery.
Again, Theorem 1 ensures m̂ gets its associated determinant. ⇒⇐

��

4 Implementation

The Charm++ parallel programming runtime system [18] was chosen for Camel’s
implementation. There are several features of theCharm++ execution model that make
it a general framework for message-passing programs. The Charm++ philosophy
encourages modularity and locality by having objects that carry out the execution of
the program. Each object, called a chare in Charm++’s terminology is an independent
execution unit that exports remote methods. Each method invocation is transformed
into an active message that triggers a particular method upon reception. Thus, the
collection of objects in a Charm++ program performs a computation by exchanging
messages in an asynchronous fashion, providing what is called message-driven execu-
tion. This mechanism is more general than the one enforced by the message-passing
interface (MPI). The Charm++ runtime system conceives the underlying machine as
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Fig. 4 Architecture of Camel implementation in Charm++

a collection of processing entities (PEs). The unit of failure in the Charm++ model is
one PE. Therefore, we will consider in the rest of the paper the loss of one PE as the
representative example of a failure in HPC systems. The set of objects in a computa-
tion is divided among the set of PEs by the runtime system. Because multiple objects
may reside on the same PE, it is said that Charm++ provides overdecomposition. The
runtime system also handles migration of objects between different PEs to achieve
load balance, fault tolerance, and power management.

Figure 4 presents a general view of the architecture in Charm++ that implements
the Camel protocol. The processing entities take the place of the processes described
in Sect. 2. Therefore, the failure of one PE implies multiple objects are lost simultane-
ously. Figure 4 also shows two spanning trees: one for the set of PEs {R, S, T,W, X}
rooted at R, one for the group of objects {r, s, t, . . . , z} rooted at r . This figure replaces
the view of the spanning tree between the group of processes in Fig. 3b. In Charm++,
both PEs and objects have spanning trees, although they are interdependent. A man-
ager object (tagged with a letter M in the diagram) represents a special kind of object
that manages collective operations among the set of objects and defines the spanning
tree. All the information relative to spanning trees for collectives is maintained in this
set of objects. In addition, the manager is in charge of sending and receiving all collec-
tive communication messages. Because of its strategic role, the manager object may
interact with the runtime system layer (see Fig. 2a) to perform all necessary operations
in Algorithm 2, in particular functions Accumulate and Agglomerate.

Seemingly, the two major challenges of the implementation of Camel inCharm++
are the non-FIFO channels and the asynchrony of execution. If channels do not con-
serve FIFO ordering, then Algorithms 1 and 2 will still work because reception order
is stored and reproduced during recovery. However, the programmer has to be aware of
this property and design the application accordingly. By the same token, asynchronous
operations do not prevent the algorithms to be correct, but create a restriction on the
mind of the programmer as to what type of assumptions can be made.

5 Experimental evaluation

5.1 Setup

The implementation of Camel protocol presented in Sect. 4 was deployed on two
different supercomputers, Intrepid and Stampede. Intrepid is housed by the Argonne
Leadership Computing Facility (ALCF) in Argonne National Laboratory (ANL). It is
an IBM Blue Gene/P machines with 40,960 nodes. Each node consists of one quad-
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core 850 MHz PowerPC 450 processor and 2 GB DDR2 of main memory. Intrepid
has a total of 163,840 cores, 80 terabytes of RAM, and a peak performance of 557
TeraFLOPs. Stampede is hosted at Texas Advanced Computing Center (TACC). It has
6,400 nodes, with each node containing 2 Intel Xeon processors (16 cores total) and
32GB of memory. Stampede’s interconnect uses Mellanox FDR Infiniband technology
in a two-level fat-tree topology. With a total of 96,000 cores, it can deliver more than
10 PetaFLOPs.

A couple of Charm++ applications were selected to experimentally evaluate the
implementation of Camel. These applications were introduced in Fig. 1. LeanMD
is a mini-application that emulates the communication pattern in NAMD. The major
goal of LeanMD is to compute the interaction forces between particles in a three-
dimensional space based on the Lennard-Jones potential. It does not include long-
range force computation. The object decomposition divides a three-dimensional space
into hyperrectangles. Each of these boxes, called cells, contains a subset of the par-
ticles. A specific object, called a compute, is connected to the two cells and receives
the particles from both cells to perform the particle interaction computation. In each
iteration of LeanMD, each cell sends its particles to all the computes attached to it
and receives the updates from those computes. OpenAtom is a parallel application for
molecular dynamics simulations based on fundamental quantum mechanics principles.
Car-Parrinello ab-initio molecular dynamics (CPAIMD) is a well-known approach that
has proven to be efficient and useful in this type of simulations. The parallelization of
this approach beyond a few thousand processors is challenging, due to the complex
dependencies among various subcomputations. This may lead to complex communi-
cation optimization and load balancing problems. OpenAtom implements CPAIMD
in Charm++.

5.2 Results

The main goal of Camel is to reduce the memory footprint of the message log in
message-logging protocols. We measured the size and type of all messages logged
during executions of both LeanMD and OpenAtom and present the breakdown of the
message log. Figure 5 presents the message log memory consumption of LeanMD on
Stampede using the traditional Scmel protocol (listed in Algorithm 1) and Camel

(listed in Algorithm 2). The former is represented by letter S in the figure, while
the latter by letter C . Figure 5a shows a small problem size, whereas Fig. 5b shows
a moderate problem size. In both cases, Camel manages to dramatically decrease
the memory pressure. Camel reduces the size of the memory log by at least 95 %.
Both figures also show the strong scale of Camel from 1K cores up to 16K cores.
This dramatic reduction comes from the fact that LeanMD transfers most of the data
through collective operations (as shown in Fig. 1a). In fact, less than 1 % of the data
is sent via point-to-point operations. LeanMD exchange particle information between
cells and computes using multicast and reductions. We should note that Camel is more
effective reducing the memory footprint of multicast. That is reflected in Fig. 5a,b.
In general, Camel decreases multicast memory pressure from 50 to 1 %, whereas
reduction memory pressure goes down from 50 to 3 %. This is a natural effect of having
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Fig. 5 Relative message log size of Scmel (S) and Camel (C) in LeanMD
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Fig. 6 Relative message log size of Scmel (S) and Camel (C) in OpenAtom

to store only one copy of the multicast message, but as many reduction messages as
the root of the spanning tree receives (see Algorithm 2).

Figure 6 shows the OpenAtom results on Intrepid. Two problem sizes, small and
moderate, were used and appear in Fig. 6a, b, respectively. Again, Camel shows
a significant reduction of the message log. In Fig. 6 the total memory required by
the message log gets reduced from 24 to 5 % as we move from 256 to 4K cores.
The fraction of messages that belong to point-to-point operations remains unchanged
because Camel only addresses collective messages. That fraction is significant in
OpenAtom, taking from 55 to 32 %. Again, Camel has a higher impact on multicast
messages than in reduction messages. For instance, at 4K in Fig. 6, the fraction of the
message log related to reduction messages goes from 30 to 10 %, whereas its multicast
counterpart goes from 38 to 6 %. Figure 6b shows similar results for a bigger problem
size in OpenAtom. The decrease on the message log for this case goes from 24 to 65 %
as we strong scale the program from 1K to 16K cores. Figure 6a, b share the same
trend to decrease the message log used by Camel as the program strong scales. The
reason for such pattern is that OpenAtom uses more heavily collective communication
operations as more cores are available. That can be verified by the decreasing fraction
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Table 3 Message and
determinant statistics for
LeanMD

Number of cores

1024 2048 4096 8192 16,384

Messages (×106) 24.32 23.7 32.33 32.05 33.09

Scmel

Message log (GB) 269.49 261.19 363.44 359.59 370.82

Determinants (×106) 54.72 54.04 62.68 62.4 63.44

Piggybacked (×106) 348.23 265.33 275.84 221.68 185.39

Camel

Message log (GB) 12.77 12.77 12.79 12.83 12.94

Determinants (×106) 28.94 28.61 32.99 32.87 33.44

Determinants (%) 52.88 52.94 52.63 52.68 52.71

Piggybacked (×106) 185.48 143.52 136.62 129.19 111.51

Piggybacked (%) 53.26 54.09 49.53 58.28 60.15

of point-to-point messages in the spectrum. Many HPC applications apply the same
logic of relying more heavily on collective operations as the scale gets larger. Finally,
a difference in the magnitude of the impact of Camel on LeandMD and OpenAtom
relates to the depth of the spanning tree. LeanMD uses spanning trees that reach more
cores and hence Camel manages to get a more dramatic decrease in the size of the
message log.

An additional benefit of Camel is the elimination of certain determinants for reduc-
tion operations and the avoidance of piggybacking certain determinants for multicast
operations. Algorithm 2 shows in function ReceiveReductionMsg how a reduction
message generates determinants only at the root of the spanning tree. Therefore, com-
pared with Scmel, Camel does not create determinants for reception of intermediate
contribution messages to a reduction. In the case of multicast, Algorithm 2 shows
in function ReceiveMulticastMsg how piggybacked determinants are removed
from the original multicast messages before being forwarded to the children by func-
tion SendMsgToChildren. Table 3 presents relevant communication statistics for
LeanMD running 100 iterations on the one-million particle dataset. The test was run on
Stampede for the range between 1024 and 16,384 cores. The first row in Table 3 reports
the total number of messages sent in the system during the whole execution. Although
the table presents a strong scaling test, the number of total messages increases with
the system size due to a different and deeper structure in the spanning tree. The same
holds true for the size of the message log. Table 3 compares Scmel and Camel for
the size of the message log (the proportion appears in Fig. 5a), the total number of
determinants created and the total number of determinants piggybacked. Again, the
numbers correspond to the sum of all determinants in all the processes for the whole
execution. Besides the dramatic reduction in message log size, Camel is also able to
approximately reduce in half the number of determinants created and the number of
determinants piggybacked. Eliminating determinants (and their distribution) can alle-
viate the main source of performance penalization of message-logging protocols [17].
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It does, however, depend on the type of interconnection. The performance difference
on Stampede was not significant.

6 Analysis

Traditional message-logging protocols can cope with messages from collective-
communication operations [3,7,13], but fail to leverage the structure of those oper-
ations to decrease the memory size of the message log. Camel capitalizes on the
implementation of collective operations on a spanning tree and only saves the mini-
mum amount of data needed to reproduce the result of such operation after a failure.
Camel is meant to extend any traditional message-logging protocol by adding extra
few bits of information and handling collective messages slightly differently. Although
this paper uses causal message logging as an example,Camel philosophy is applicable
to other protocols.

Camel does not require the generation of determinants for reduction messages,
except at the root of the spanning tree. Determinism is not needed when agglomerating
messages at the intermediate nodes because replicating the same deterministic deci-
sions will not have any impact on the correctness of the execution. More specifically,
if process X is an intermediate node in a spanning tree and agglomerates reduction
messages in a non-deterministic way, the exact same decision does not need to be made
during recovery because the agglomerated message emitted by X will be discarded.
If functions Accumulate and Agglomerate are deterministic, then determinant
generation can be removed from the root node in Algorithm 2.

The failure unit assumed in this paper is a process (or a PE in the Charm++

implementation). A more realistic assumption, given the failure pattern of modern
supercomputers [22], is to assume a node as the unit of failure. It is straightforward to
extend Camel’s ideas into a multicore node-based runtime system. At the node level,
Camel would work exactly the same way as in the PE-based case. For instance, the
Scmel protocol in Algorithm 1 has been extended to multicore node systems [22] and
Camel could be adjusted to such environment.

The design of Camel includes a tight collaboration with the runtime system. Fig-
ure 2a shows this interaction in which certain operations in Camel call the runtime
layer for accumulation and agglomeration of messages. One additional function at the
runtime layer might be to provide message buffering in case of concurrent collective
operations.

One of the main features of Camel is its appeal for scalability. The results in
Sect. 5 demonstrated the benefits of Camel in both strong and weak scaling. As more
processes are used to run collective-intensive programs, the spanning trees get deeper
and there is a bigger impact on saving messages near the root that would otherwise
have been stored throughout the whole tree.

There are several ways in which Camel can be optimized. First, during recov-
ery multicast messages are always propagated, regardless whether the multicast has
actually reached all nodes. Duplicate multicast messages can be suppressed by hav-
ing acknowledgments from children. Therefore, parents in the spanning tree would
not propagate a multicast message if the operation has been confirmed by its chil-
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dren. Second, other structures for collectives can be used. In some cases, processes
would delegate collective messages even if they are not part of the group involved
in the collective. Third, it is possible to merge Camel with other memory-reducing
techniques for message logging. For instance, team-based message logging [21,26]
groups processes into teams and avoids storing communication within teams. Team-
based message logging can be integrated with Camel.

7 Conclusions and future work

The effective usage of future supercomputers will depend on the ability of the system to
overcome the high rate of failures predicted for such large systems. Rollback-recovery
strategies have been widely adopted in the HPC community. One of those strategies
is message logging, which stores communication to avoid a global rollback. That
feature makes message-logging protocols able to reduce execution time and energy
consumption on a faulty machine. However, a drawback of message logging is the
increased memory pressure due to the message log.

This paper introduces Camel, a collective-aware protocol to reduce the size of the
message log in memory. Camel extends traditional protocols by adding a few bits of
extra information and only stores messages that are absolutely necessary to reproduce
multicast and reduction operations during recovery. Results on two different platforms
and using two different applications demonstrate Camel’s ability in substantially
reduce the memory pressure of message logging.

Other types of collective communication operations can be incorporated into
Camel’s model. We will explore those operations in the future along with other appli-
cations that make a significant use of collective operations. In addition, we will design
a holistic approach that combines Camel with other memory-reducing techniques for
message logging.
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