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Abstract—We present a silicon photonics optical link utilizing
heterogeneously integrated photonic devices driven by low-power
advanced 32-nm CMOS integrated circuits. The photonic com-
ponents include a quantum-confined Stark effect electroabsorp-
tion modulator and an edge-coupled waveguide photodetector,
both made of III-V material wafer bonded on silicon-on-insulator
wafers. The photonic devices are wire bonded to the CMOS chips
and mounted on a custom PCB card for testing. We demonstrate an
error-free operation at data rates up to 30 Gb/s and transmission
over 10 km at 25 Gb/s with no measured sensitivity penalty and a
timing margin penalty of 0.2 UI.

Index Terms—CMOS integrated circuits, optical receivers,
optical transmitters.

1. INTRODUCTION

HILE multimode VCSEL-based interconnects currently

dominate short-reach optical links (<100 m), silicon
photonics is a strong candidate for longer distance applications
typically found in data centers (up to 2 km). Silicon photonics
incorporating WDM promises very high-bandwidth transceivers
that may also satisfy the low-power and low-cost requirements
of the datacom industry. Different implementations of silicon
photonics are currently under investigation. In the monolithic
integration paradigm, the electronics and the photonics share
the same silicon wafer, enabling very low parasitics, and po-
tentially a denser footprint than discrete solutions. However,
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there are some tradeoffs in tuning the fabrication process for
best electronic or photonic device performance. For example,
photonics wants thicker silicon to get a lower waveguide aspect
ratio and tighter bend radius, while FETs want thinner silicon to
get better gate control over channel and a smaller partially de-
pleted region. Also, current monolithic processes have achieved
integration with > 100 nm [1] and sub-100 nm CMOS [2], but
migrating or scaling the technology to new CMOS node is not
necessarily straightforward and typically requires significant in-
vestment. In the hybrid integration paradigm, the electronics and
the photonics are designed and fabricated on different platforms.
This two-chip approach enables higher flexibility in choosing
the best performance devices, with a potential disadvantage of
higher interconnect parasitics between the chips. These effects
can however be mitigated by using short wire-bonds or by flip-
chip bonding the TX and RX drivers on the photonics. Us-
ing the hybrid approach, advanced CMOS technology can be
used to drive silicon photonics components enabling low-power
and high-speed transceiver modules. For instance, in [3], the
authors demonstrated a fully integrated link at 10 Gb/s using
40 nm CMOS chips driving a ring modulator and a waveguide
photodetector (PD) with a power efficiency of 2.1 pl/bit, ex-
cluding laser wall-plug efficiency.

The flexibility offered by hybrid integration also enables more
options for the design and fabrication of the photonics elements.
Among these is the possibility to utilize I[II-V material as a gain
medium on the silicon photonic platform. This approach, re-
ferred to as heterogeneous integration, was originally developed
by groups at Ghent University [4], the University of California
Santa Barbara [5], and Intel [6]. The heterogeneous platform
enables low-loss and dense footprint silicon waveguides for
all passive functions including waveguide routing, polarization
handling and WDM filters. The integrated III-V material can
be used to implement efficient modulators [7] and detectors [8]
and to provide on-chip gain for lasers and semiconductor optical
amplifiers (OAs). Having the laser source integrated on-chip is a
main advantage of this architecture and there have been various
demonstrations of heterogeneous lasers having performances
comparable with InP-based devices [9], [10].

We present an optical link at 1.31 pm comprised of electroab-
sorption modulator (EAM) and PD devices hybrid integrated
with low-power 32 nm CMOS electronics. The photonic devices
were fabricated in a heterogeneous process using wafer-bonding
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techniques to integrate III-V materials on silicon-on-insulator
(SOI) wafers. We previously demonstrated in [11] data-rates
up to 30 Gb/s, and have also shown transmission at 25 Gb/s
over 10 km of single-mode fiber without penalty, highlighting
the ability of silicon photonics to enable the reach needed for
datacenters. In this paper, we present more details on the de-
sign and performance of the TX and RX assemblies and also
show additional results of transmission experiments. The paper
is organized as follows. In Section II we describe the heteroge-
neously integrated photonic devices. In Section III we present
the TX and RX assemblies. In Section IV we present the results
on the optical link. Finally, we conclude the paper in Section V

II. HETEROGENEOUSLY INTEGRATED PHOTONIC DEVICES

The photonic devices used in the link were fabricated using
III-V material heterogeneously integrated with silicon waveg-
uides. They include an EAM and a waveguide PD. Both devices
were fabricated using an established foundry infrastructure with
Aurrion’s heterogeneous integration process. The basic underly-
ing photonic circuit is comprised of low-loss silicon and dielec-
tric waveguides and is generated on an 8” SOI substrate. Het-
erogeneous integration of InP is realized by bonding “chiplets”
of custom unprocessed InP epitaxial material to the silicon sub-
strate. Subsequent lithography and etch steps are used to form
a number of devices including lasers, OAs, modulators, and
PD devices. Evanescent mode converters provide a conduit be-
tween the silicon and InP layers to optimally place the optical
mode within the device structures. Further deposition and etch
processing steps encapsulate the InP device structures with di-
electric materials and form metal interconnects and contacts for
interfacing with driver and control circuitry.

A. Electroabsorption Modulator

Fig. 1(a) shows the transmission spectra of the EAM for dif-
ferent bias voltages using TE-polarized light from a tunable
external-cavity laser. The spectra were normalized to the trans-
mission losses of a passive silicon waveguide. Far from the
band edges, the intrinsic insertion loss of the EAM without bias
is ~ 1 dB. With increasing voltage, the absorption edge shifts to
longer wavelengths due to the quantum-confined Stark effect.
The EAM can operate over a large wavelength range of ~30 nm
(see gray area in Fig. 1) while providing an extinction ratio (ER)
larger than 20 dB with residual absorption below 3 dB. Fig. 1(b)
presents the electro-optical (EO) small-signal response of the
EAM (51, left axis) and the real part of S7; (right axis). For
this measurement, the EAM was driven directly by a network
analyzer (Agilent N5230A 40 GHz PNA) with no additional
driver. A bias tee was added and the EAM was probed with
GSG probes. The output light was coupled into fiber and a 40
GHz bandwidth u2t PD was used for optical to electrical conver-
sion. The cables, the bias tee, and the probe were calibrated out.
The EO S5, shows a 3-dB RC roll-off of 16 GHz that matches
the purely electrical measurement, R{|S1; |}, and gives a capac-
itance of 200 fF at a reverse bias of 5.4 V. It should be noted
that the EO bandwidth measurement is not a true measurement
of the device speed but rather a way to measure its capacitance.
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Fig. 1. (a) EAM transmission spectra for different reverse bias from 0 to
10 V (1 V steps); (b) EO and EE small-signal response of the EAM at a reverse
bias of 5.4 V: Sy at 1310 nm (left axis), and 3{|S11 |} (right axis).
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Fig. 2. (a) Responsivity spectra of the PD for different temperatures. (b) OE
small-signal response of the PD for 0, 1 and 2 V reverse bias.

The EAM is essentially a capacitor which is here driven with a
50 2 source. In the link presented below, the EAM is driven with
a custom driver chip designed to deliver maximum amplitude to
the capacitive load thus avoiding fixed impedance transmission
lines.

B. Waveguide Integrated Photodiode

The pin PD structure is similar to that reported in [12]. In
Fig. 2(a), we plot the internal responsivity (taking into account
~ 7 dB coupling losses) of the PD for different wavelengths
and temperatures at a 1.5 V reverse bias. At 20 °C and 1310
nm, the responsivity is 0.55 A/W. The dark current of the PD
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Fig. 3. TX block diagram (top) and pictures of the TX assembly (bottom)

showing the wired-bonded package and a close-up of the EAM.
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Fig. 4. RX block diagram (top) and pictures of the RX assembly (bottom)
showing the wired-bonded package and a close-up of the PD.

was ~ 6nA at a reverse bias of 1.5 V. In Fig. 2(b), we present
the OE small-signal response of the PD. For that measurement,
we used a lightwave component analyzer (Agilent N4373A 67
GHz LCA), and we calibrated down to the probe tips using an
impedance standard substrate. As seen in the spectrum, the PD
device exhibits a 3-dB bandwidth of 22 GHz at 2 V reverse bias.

III. TRANSMITTER AND RECEIVER ASSEMBLIES

In Figs. 3 and 4 we present high-level block diagrams il-
lustrating the TX and RX assemblies used for the optical link.
The TX consists of a driver chip wire-bonded to an EAM. The
differential electrical inputs have 50 €2 on-chip terminations to
Vbp /2, followed by CMOS inverters to amplify the signal to
full-swing CMOS levels. Cross-coupled CMOS inverters min-
imize timing error between the differential signals. The level
shifter [13] provides low (Vg to Vpp) and high (Vpp to Vppo)
CMOS outputs, which are buffered by inverter chains to drive
the output stage [14]. The output stage uses cascoding to limit
the static voltage across any device to Vpp while providing Vsg

to Vppo output swing [14], [15]. Using this stacked approach,
we were able to provide an output swing of 2 V,,,, to the EAM.
The RX chip was reported previously in [16]. The RX consists
of a PD wirebonded to the RX chip containing a transimpedance
amplifier (TIA), a limiting amplifier (LA), an offset cancella-
tion loop, and a 50 €2 output buffer (OUT). The combination
of TIA, LA, and LPF has 39.1k 2 gain, 23.7 GHz bandwidth,
2.6 MHz low frequency cutoff, and 3.7uArms input-referred
current noise in simulation after layout parasitic extraction.
Both TX and RX were fabricated in IBM’s standard 32 nm
SOI CMOS technology, using thin oxide 1V breakdown de-
vices only. The TX and RX circuits occupy 18 pm x 69 pm and
114 pm x 88 pum respectively. Both TX and RX sites were wire-
bonded to a high-speed custom PCB for testing. The PCB has
short uncoupled 50 €2 traces for applying/extracting the high-
speed differential signals to/from the TX/RX. Power and control
biases are routed to wirebond pads near the chip and surface-
mount decoupling capacitors are used on all the supplies. The
PCB is cut into a diving board configuration for edge-coupled
optical access.

IV. OPTICAL LINK TESTING AND RESULTS
A. Experimental Setup

Fig. 5(a) describes the link setup which includes: a 1.31 um
commercially available DFB laser with an output power of
12 dBm, a polarization controller (PC), the TX assembly, an
O-band OA with 20-dB gain, a fiber spool, a variable optical
attenuator, another PC and the RX assembly. The output of the
RX was connected either to a bit error rate (BER) tester or to a
50-GHz sampling scope. For all link measurements, the reverse
bias on the EAM was fixed at 5.4 V and we measured a dynamic
ER of ~8 dB with the 2 V,,,, output swing of the CMOS driver.
The reverse bias on the PD was 1.5 V. The photonics chips
were accessed via lensed fibers using piezo-controlled stages.
The optical power breakdown of the link was as follows: ~21
dB EAM loss including 2 x ~7 dB coupling loss and ~7 dB
insertion losses (at 5.4 V reverse bias), and ~ 7 dB coupling loss
at the PD. The high coupling losses of the photonic devices are
due to the absence of fiber couplers in the current designs and
explain the need for an OA to close the link.

B. Results and Discussions

Fig. 5 presents the results of the link. In Fig. 5(b) and (c)
we show optical and electrical eyes at 10, 20, 25 and 30 Gb/s
data rates. The optical eyes were captured after the OA using
the sampling scope optical head having a 30 GHz bandwidth
and the optical power was ~0 dBm. The ringing observed on
the transmitter eyes is attributed to wirebond inductance in the
EAM to chip connection and is particulary noticable at 20 Gb/s.
This ringing could be mitigated by optimizing the transmitter
package using shorter wirebonds or by flip-chipping the driver
chip onto the photonic device. The RX filters out the ringing as
seen in the eyes of Fig. 5(c). Fig. 5(d) presents the measured RX
sensitivity characteristics of the link for different data-rates. For
the sensitivity measurements, the received power was referenced
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(a) Experimental setup for high-speed link characterization; (b) Optical eyes captured after the transmitter at 10, 20, 25, and 30 Gb/s; (c) RX electrical

eyes at 10, 20, 25, and 30 Gb/s; (d) RX sensitivity of the link at 10, 20, 25, and 30 Gb/s for PRBS7; (¢) RX sensitivity of the link at 25 and 30 Gb/s for PRBS7 and
PRS31. For the sensitivity measurements the received power was referenced to the light coupled in the silicon waveguide and corrected for infinite extinction ratio.

to the light coupled in the silicon waveguide through received
photo-current and corrected for infinite ER. At BER=10"12,
the RX sensitivity was —10.5, —9.4, —7.6, and —3.2 dBm at
data-rates of 10, 20, 25, and 30 Gb/s, respectively. Negligible
sensitivity degradation was observed when moving from 27 — 1
PRBS to 23! — 1 PRBS at 25 and 30 Gb/s as seen in Fig. 5(e). In
Fig. 6(a) we present the sensitivity curves at 25 Gb/s after 11 km
of fiber transmission and show no measured penalty compared
with the back-to-back curve. The bathtub curves in Fig. 6(b)
indicate small closure of the eye (~0.2UI) when moving from
back-to-back to 11 km fiber transmission, likely due to the dis-
persion of the fiber. We used two different transmitters for the
measurements described above. The two assemblies were pack-
aged in exactly the same manner using nominally identical chips
and we did not observe any differences in the link sensitivity
under identical conditions. A first version was used for the sen-
sitivity measurements at 10, 20, and 25 Gb/s PRBS7, and a later
version was used for 30 Gb/s PRBS7, PRBS31 measurements
and all transmission characterizations. The eyes were also cap-
tured with the later version.

We used similar power settings for all measurements and
measured a power efficiency (excluding laser and amplifier) of
3 pJ/bit at 30 Gb/s. This includes 1.25 pJ/bit for the TX assembly
and 1.75 pJ/bit for the RX assembly. The power efficiency can
likely be improved at lower data-rates at the expense of the
bandwidth of the RX as shown in [16]. The external OA was
necessary to offset the high coupling losses of both EAM and PD
chips which did not have fiber couplers to efficiently transition
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Fig. 6. Transmission experiment at 25 Gb/s and PRBS7; (a) link sensitivity

and (b) bathtub curves in back-to-back and after 11 km of fiber transmission.

the optical mode between the waveguide and the fiber. If fiber
mode converters were included and the coupling losses were
(conservatively) reduced to 3 dB per facet, the link without
amplifier would have ~3 dB margin at 25 Gb/s assuming the
same laser input power of 12 dBm and a RX sensitivity of —7.6
dBm [see Fig. 5(e)]. This margin could be further improved by
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integrating the laser on-chip which is a significant advantage of
the heterogeneously integrated approach [9].

V. CONCLUSION

We presented an optical link combining fast and efficient het-
erogeneously integrated silicon photonics with 32 nm CMOS
electronics. We demonstrated data-rates up to 30 Gb/s and trans-
mission at 25 Gb/s over more than 10 km of fiber with no penalty.
We measured a power efficiency of 3 pJ/bit excluding the laser
and the OA. By including fiber couplers into the photonic com-
ponents, we expect to be able to close the link with ~3 dB
margin at 25 Gb/s with further potential improvement enabled
by monolithic integration of the laser with the EAM. Our re-
sults illustrate the potential speed and efficiency offered by com-
bining high performance heterogeneously-integrated photonics
with advanced CMOS to meet the challenging requirements of
next-generation data centers.
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