
Research Article
A Parallel Framework with Block Matrices of a Discrete Fourier
Transform for Vector-Valued Discrete-Time Signals

Pablo Soto-Quiros1,2

1Escuela de Matemáticas, Instituto Tecnológico de Costa Rica, Apartado 159-7050, 30101 Cartago, Costa Rica
2Centre for Industrial and Applied Mathematics, University of South Australia, Adelaide, SA 5095, Australia

Correspondence should be addressed to Pablo Soto-Quiros; sotjp001@mymail.unisa.edu.au

Received 6 May 2015; Revised 18 July 2015; Accepted 2 September 2015

Academic Editor: Bruno Carpentieri

Copyright © 2015 Pablo Soto-Quiros. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-
valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed
in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis,
design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental
investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found
that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time.
Additionally, speedup increases when the number of logical processors and length of the signal increase.

1. Introduction

Let 𝑙2(Z
𝑛
,C𝑑) be the space of vector-valued discrete-time

signals with 𝑛 samples, where each sample is a complex
vector of length 𝑑.The vector-valued discrete-time signals are
used very often in several applications in signal processing
and electrical engineer, for example, vector quantization of
images [1], time-frequency localization with wavelets [2],
image coding [3], vector filter bank theory [4], linear time-
dependent MISO [5], and analysis of MMSE estimation for
compressive sensing of block sparse signals [6].

Now, to analyze the spectra of vector-valued discrete-
time signals, a novel tool was developed, and it is called
vector-valued DFT [7, 8]. This transform has applications in
vector analysis in complex, quaternion, biquaternion, and
Clifford algebras [8]. Additionally, the vector-valued DFT is
used in digital signal processing, for example, the study of
new complex valued constant amplitude zero autocorrelation
(CAZAC) signals [9], which serve as coefficients for phase
coded waveforms with prescribed vector-valued ambigu-
ity function behavior, which is relevant in light of time-
frequency analysis, vector sensor, and MIMO technologies
[7].

The following paper presents a parallel framework of the
vector-valued DFT.Themajor contributions of this paper are
summarized as follows:

(1) The construction of a new mathematical structure
for the vector-valued DFT using block matrix theory
such that it allows a parallel implementation in
multicore processors.

(2) Reducing the elapsed time to compute the vector-
valued DFT of a vector-valued discrete-time signal
using parallel computing through aforementioned
new mathematical framework.

This new framework is developed with a set of block
matrix operations, for example, Kronecker product, direct
sum, stride permutation, vec operator, and vec inverse opera-
tor (see Section 2.1 for details).These blockmatrix operations
contribute to analysis, design, and implementation of parallel
algorithms in multicore processors [10–12]. This mathemat-
ical framework is inspired in the matrix representation of
the Cooley-Tukey fast Fourier transform (FFT) algorithm
for complex discrete-time signals, corresponding to the
decomposition of the transform size 𝑛 into the product of two
factors 𝑟 and 𝑠, which is developed in [10, 12, 13].

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 348517, 7 pages
http://dx.doi.org/10.1155/2015/348517

2 The Scientific World Journal

The present paper is organized as follows. Section 2
explains a mathematical background about block matrix
operations and discrete Fourier transform. Section 3 defines
the concept of vector-valued DFT for vector-valued discrete-
time signals. Section 4 develops a mathematical framework
of vector-valued DFT in terms of block matrix operations
for vector-valued discrete-time signals with length 𝑛 = 𝑟𝑠.
Thismathematical framework contributes to implementation
of parallel algorithms. Section 5 explains an implementa-
tion and experimental investigation of this mathematical
framework using parallel computing in multicore processors
with MATLAB. Finally, some conclusions are presented in
Section 6.

Throughout the paper, the following notations are used.
Z
𝑛
= {0, 1, . . . , 𝑛 − 1} is the additive group Z of integers

modulo 𝑛,C𝑚×𝑛 is the matrix space of𝑚 rows and 𝑛 columns
with complex numbers entries and C𝑛 = C𝑛×1. The rows
and columns of A ∈ C𝑚×𝑛 are indexed by elements of Z

𝑚

andZ
𝑛
, respectively.A(𝑗, 𝑘),A(𝑗, :),A(:, 𝑘), andA𝑇 represent

entry (𝑗, 𝑘), row 𝑗, column 𝑘, and transpose matrix of A,
respectively. I

𝑛
∈ C𝑛×𝑛 is identity matrix.

2. Background

2.1. Block Matrix Operations. A block matrix A ∈ C𝑚𝑝×𝑛𝑞

with 𝑚 row partitions and 𝑛 column partitions and a block
vector x ∈ C𝑚𝑝 with𝑚 row blocks are defined as

A = (

A
0,0

⋅ ⋅ ⋅ A
0,𝑛−1

.

.

. d
.
.
.

A
𝑚−1,0

⋅ ⋅ ⋅ A
𝑚−1,𝑛−1

),

x = (

x
0

.

.

.

x
𝑚−1

),

(1)

respectively, where A
𝑗,𝑘
∈ C𝑝×𝑞 designates (𝑗, 𝑘) block and

x
𝑗
∈ C𝑝 designates 𝑗 block. In this paper, the following block

matrix operations are used: Kronecker product, direct sum,
stride permutation, vec operator, and vec inverse operator.

The Kronecker product of two matrices A ∈ C𝑚×𝑛 and
B ∈ C𝑝×𝑞 is defined as A ⊗ B ∈ C𝑚𝑝×𝑛𝑞 and it replaces every
entry (𝑗, 𝑘) of A by the matrix A(𝑗, 𝑘)B. In the special case
A = I
𝑛
, it is called parallel operation [12].

The direct sum of 𝑛matrices constructs a block diagonal
matrix from a set of matrices, that is, for {C

𝑘
}
𝑘∈Z
𝑛

, such that
C
𝑘
∈ C𝑝𝑘×𝑞𝑛 :

C = ⨁
𝑘∈Z
𝑛

C
𝑘
= diag (C

0
,C
1
, . . . ,C

𝑛−1
) , (2)

where C ∈ C𝑝×𝑞, 𝑝 = ∑
𝑗∈Z
𝑛

𝑝
𝑗
, and 𝑞 = ∑

𝑗∈Z
𝑛

𝑞
𝑗
.

Let 𝑛 = 𝑟𝑠. The stride permutation matrix is defined as
L𝑛
𝑠
∈ C𝑛×𝑛 such that it permutes the elements of the input

signal x ∈ C𝑛 as 𝑗𝑟 + 𝑘 → 𝑘𝑠 + 𝑗, 𝑗 ∈ Z
𝑠
, and 𝑘 ∈ Z

𝑟
[12, 14].

This matrix permutation governs the data flow required to

parallelize a Kronecker product computation [12]. We clarify
that the superscript 𝑛 is an index, not power.

The vec operator,V : C𝑚×𝑛 → C𝑚𝑛, transforms a matrix
into a vector by stacking all the columns of this matrix one
underneath the other. On the other hand, the vec inverse
operator, R

𝑚,𝑛
: C𝑚𝑛 → C𝑚×𝑛, transforms a vector of

dimension𝑚𝑛 into a matrix of size𝑚 × 𝑛.

2.2. Discrete Fourier Transform. Let 𝑙2(Z
𝑛
) be the set of C-

valued signals on Z
𝑛
; that is, x ∈ 𝑙2(Z

𝑛
) if and only if x ∈

C𝑛 [9]. Additionally, for each 𝑘
1
∈ Z, x(𝑘

1
) = x(𝑘

2
), where

𝑘
2
∈ Z
𝑛
and 𝑘

1
≡ 𝑘
2
mod 𝑛. The discrete Fourier transform

(DFT) of x ∈ 𝑙2(Z
𝑛
) is represented as Fx : Z𝑛 → C such

that Fx(𝑘) = ∑𝑚∈Z
𝑛

x(𝑚)𝜔−𝑚𝑘
𝑁

, where 𝜔
𝑛
= exp(2𝜋𝑖/𝑛) and

𝑖 = √−1.
As mentioned in [14], there are two different approaches

of representing the DFT: as matrix-vector products or using
summations. Consequently, fast algorithms using parallel
computing are represented with either a matrix formalism
as in [10, 12–14] or summations as in most signal processing
books. Below, the matrix formalism is introduced and used
to express the Cooley-Tukey FFT algorithm, corresponding
to the decomposition of the transform size 𝑛 into the product
of two factors 𝑟 and 𝑠; that is, 𝑛 = 𝑟𝑠.

Thematrix representation ofDFT of x isFx = F
𝑛
x, where

F
𝑛
∈ C𝑛×𝑛 such that F

𝑛
(𝑗, 𝑘) = 𝜔

−𝑗𝑘

𝑁
. If 𝑛 = 𝑟𝑠, then the

matrix formalism can be used to express F
𝑛
as factorizations

of matrices using block matrices operations [10, 12, 13]:

F
𝑛
= L𝑛
𝑠
(I
𝑟
⊗ F
𝑠
) L𝑛
𝑟
T𝑛
𝑟
(I
𝑠
⊗ F
𝑟
) L𝑛
𝑠
. (3)

Here, T𝑛
𝑟
is a diagonal matrix containing the twiddle factors.

We clarify that the superscript 𝑛 is an index, not power. This
factorization of F

𝑛
is the matrix representation of the Cooley-

Tukey FFT for 𝑛 = 𝑟𝑠. In addition, this representation of F
𝑛

allows the implementation using parallel computing [14].

3. DFT for Vector-Valued Signals

Based on [2, 6–9, 15, 16], the space of vector-valued discrete-
time signals with 𝑛 samples is defined as

𝑙
2
(Z
𝑛
,C
𝑑
) = {(x

0
, x
1
, . . . , x

𝑛−1
)
𝑇

: x
𝑗
∈ C
𝑑
, 𝑗 ∈ Z

𝑛
} . (4)

The space 𝑙2(Z
𝑛
,C𝑑) is the set of C𝑑-valued signals on Z

𝑛
;

that is, x ∈ 𝑙2(Z
𝑛
,C𝑑) if and only if x ∈ C𝑛𝑑. Additionally, for

each 𝑘
1
∈ Z, x

𝑘
1

= x
𝑘
2

, where 𝑘
2
∈ Z
𝑛
and 𝑘

1
≡ 𝑘
2
mod 𝑛.

Furthermore, if 𝑑 = 1, then 𝑙2(Z
𝑛
,C𝑑) = 𝑙2(Z

𝑛
). Now, for x ∈

𝑙
2
(Z
𝑛
,C𝑑), there is a kind of DFT for vector-valued signals

called vector-valued DFT. This transform is defined as F𝑑x :
Z
𝑛
→ C𝑑 such that

F
𝑑

x (𝑘) = ∑
𝑚∈Z
𝑛

W−𝑚𝑘
𝑛

x
𝑚
, (5)

whereW
𝑛
∈ C𝑑×𝑑 is the matrix kernel. Algorithm 1 shows the

implementation of (5). This implementation is a sequential
algorithm.

The Scientific World Journal 3

Require: x ∈ C𝑑𝑛
Ensure: y ∈ C𝑑𝑛
(1) for 𝑘 ← 0 : 𝑛 − 1
(2) for 𝑚 ← 0 : 𝑛 − 1
(3) y

𝑘
= y
𝑘
+W−𝑚𝑘
𝑛

x
𝑚

(4) end for
(5) end for

Algorithm 1: Vector-valued DFT (sequential algorithm).

From the reviewed literature, there are two kinds of
kernels for this transform: the first one is hypercomplex DFT
kernel [8]:

W
𝑛
= exp(2𝜋

𝑛
⋅ J) = cos(2𝜋

𝑛
) ⋅ I
𝑑
+ sin(2𝜋

𝑛
) ⋅ J, (6)

where J ∈ C𝑑×𝑑 such that J2 = −I
𝑑
, and the second one isDFT

frame kernel [7]:

W
𝑛
=
1

√𝑑
diag (𝜔𝛼0

𝑛
, 𝜔
𝛼
1

𝑛
, . . . , 𝜔

𝛼
𝑑−1

𝑛
) , (7)

whereA = {𝛼
0
, 𝛼
1
, . . . , 𝛼

𝑑−1
} ⊂ Z

𝑛
with 𝛼

𝑗
< 𝛼
𝑘
for 𝑗 < 𝑘. It

is called DFT frame kernel because {e
𝑗
}
𝑗∈Z
𝑛

⊂ C𝑑, where e
𝑗
=

(1/√𝑑)(𝜔
𝑗𝛼
0

𝑛
, 𝜔
𝑗𝛼
1

𝑛
, . . . , 𝜔

𝑗𝛼
𝑑−1

𝑛
)
𝑇 is a DFT frame. In this paper,

subsetsA ⊂ Z+ are used, such that card(A) = 𝑑, although it
does not represent a DFT frame.

Lemma 1. Let W
𝑛
∈ C𝑑×𝑑 be a hypercomplex DFT kernel or

DFT frame kernel. Then

(1) W𝑗+𝑟
𝑛
=W𝑗
𝑛
⋅W𝑟
𝑛
.

(2) W0
𝑛
=W𝑛
𝑛
= I
𝑑
.

(3) If 𝑘 ∈ Z and 𝑟 ∈ Z
𝑁
, thenW𝑛𝑘+𝑟

𝑛
=W𝑟
𝑛
.

(4) If 𝑛 = 𝑟𝑠, thenW𝑟𝑘
𝑛
=W𝑘
𝑠
.

Proof. For hypercomplex DFT kernel, the proof of each case
is similar to proof of 𝑛th roots of unity. For DFT frame kernel,
W
𝑛
is a diagonal matrix, and then the proof of each case is

straightforward.

4. A Parallel Framework for 𝑛 = 𝑟𝑠

In this section, the main results of this paper are presented.
Firstly, a block matrix representation of the vector-valued
DFT is given. Secondly, a new mathematical framework
from matrix representation of vector-valued DFT is derived,
using a block matrix formalism (i.e., Theorem 2). This new
result is inspired in the matrix representation of the Cooley-
Tukey FFT algorithm for complex discrete-time signals,
corresponding to the decomposition of the transform size 𝑛
into the product of two factors 𝑟 and 𝑠, which is developed in
[10, 12, 13].The result obtained inTheorem2 is transformed in
a new block matrix representation such that it contributes to
analysis, design, and implementation of parallel algorithms

(i.e., Corollary 3). This new result is inspired in (3). Finally,
a computational complexity analysis of new algorithm is
developed.

Similar to the DFT matrix representation explained in
Section 2.2, there are two different approaches of representing
the vector-valued DFT: as summations (see (5)) or using
matrix-vector products. Both approaches allow a parallel
implementation. In fact, the proof ofTheorem 2 is developed
using summation notation.

The vector-valuedDFT can be presented asmatrix-vector
products. The block matrix representation of vector-valued
DFT of x ∈ 𝑙2(Z

𝑛
,C𝑑) is defined as F𝑑x = F𝑑

𝑛
x, where F𝑑

𝑛
∈

C𝑑𝑛×𝑑𝑛 such that (F𝑑
𝑛
)
𝑗,𝑘
= W−𝑗𝑘
𝑛
∈ C𝑑×𝑑, for 𝑗, 𝑘 ∈ Z

𝑛
. We

clarify that the superscript 𝑑 is an index, not power. In this
section, a blockmatrix factorization of F𝑑

𝑛
is developed, and it

is inspired in (3). First, a generalization of stride permutation
is defined. Let 𝑛 = 𝑟𝑠. The block stride permutation matrix
[14, 17] is defined as L𝑛,𝑑

𝑠
∈ C𝑑𝑛×𝑑𝑛 such that L𝑛,𝑑

𝑠
= L𝑛
𝑠
⊗ I
𝑑
,

and, for each x ∈ C𝑑𝑛 with 𝑛 blocks x
𝑗
∈ C𝑑, the operation

L𝑛,𝑑
𝑠
x permutes each block of the input block x as 𝑗𝑟 + 𝑘 →

𝑘𝑠 + 𝑗, 𝑗 ∈ Z
𝑠
, and 𝑘 ∈ Z

𝑟
.

Theorem2. Let 𝑛 = 𝑟𝑠 and letF𝑑
𝑛
∈ C𝑑𝑛×𝑑𝑛 be the blockmatrix

of DFT for vector-valued signals. Then

F𝑑
𝑛
= (F𝑑
𝑠
⊗ I
𝑟
)T𝑛,𝑑
𝑟
(I
𝑠
⊗ F𝑑
𝑟
) L𝑛,𝑑
𝑠
, (8)

where T𝑛,𝑑
𝑟
= ⨁
𝑗∈Z
𝑠

D𝑗
𝑟
such that D

𝑟
= ⨁
𝑘∈Z
𝑟

W−𝑘
𝑛
.

Proof. Let x ∈ C𝑑𝑛, let 𝑙
1
, 𝑘
1
∈ Z
𝑟
, and let 𝑙

2
, 𝑘
2
∈ Z
𝑠
. The

block vector y = (I
𝑠
⊗ F𝑑
𝑟
)L𝑛,𝑑
𝑠
x is defined. Then

y
𝑘
2
𝑟+𝑙
1

= ∑

𝑘
1
∈Z
𝑟

W−𝑘1𝑙1
𝑟

x
𝑠𝑘
1
+𝑘
2

. (9)

Now, let z = T𝑛,𝑑
𝑟
y. From Lemma 1,W−𝑘1𝑙1

𝑟
=W−𝑠𝑘1𝑙1
𝑛

; then

z
𝑘
2
𝑟+𝑙
1

=W−𝑘2𝑙1
𝑛

y
𝑘
2
𝑟+𝑙
1

=W−𝑘2𝑙1
𝑛

∑

𝑘
1
∈Z
𝑟

W−𝑠𝑘1𝑙1
𝑛

x
𝑠𝑘
1
+𝑘
2

= ∑

𝑘
1
∈Z
𝑟

W−(𝑠𝑘1𝑙1+𝑘2𝑙1)
𝑛

x
𝑠𝑘
1
+𝑘
2

.

(10)

Let w = (F𝑑
𝑠
⊗ I
𝑟
)z. Then

w
𝑙
1
+𝑙
2
𝑟
= ∑

𝑘
2
∈Z
𝑠

W−𝑘2𝑙2
𝑠

z
𝑘
2
𝑟+𝑙
1

= ∑

𝑘
2
∈Z
𝑠

W−𝑘2𝑙2
𝑠
(∑

𝑘
1
∈Z
𝑟

W−(𝑠𝑘1𝑙1+𝑘2𝑙1)
𝑛

x
𝑠𝑘
1
+𝑘
2

)

= ∑

𝑘
2
∈Z
𝑠

W−𝑟𝑘2𝑙2
𝑛

(∑

𝑘
1
∈Z
𝑟

W−(𝑠𝑘1𝑙1+𝑘2𝑙1)
𝑛

x
𝑠𝑘
1
+𝑘
2

)

= ∑

𝑘
2
∈Z
𝑠

(∑

𝑘
1
∈Z
𝑟

W−(𝑟𝑘2𝑙2+𝑠𝑘1𝑙1+𝑘2𝑙1)
𝑛

x
𝑠𝑘
1
+𝑘
2

) .

(11)

4 The Scientific World Journal

.

.

.

.

.

.
ℱ

d

xx Ln,d
s Data

division
in s parts

Fd

r

Fd

r

Fd

r

Fd

r

Unify
data Tn,d

r

Ln,d
r Data

division
in r parts

Fd

s

Fd

s

Fd

s

Fd

s

Unify
data Ln,d

s

Figure 1: Parallel model of vector-valued DFT for x ∈ 𝑙2(Z
𝑛
,C𝑑),

𝑛 = 𝑟𝑠, using a matrix representation.

But 𝑟𝑘
2
𝑙
2
+ 𝑠𝑘
1
𝑙
1
+ 𝑘
2
𝑙
1
≡ (𝑘
2
+ 𝑘
1
𝑠)(𝑙
1
+ 𝑙
2
𝑟) mod 𝑛; then

w
𝑙
1
+𝑙
2
𝑟
= ∑

𝑘
2
∈Z
𝑠

(∑

𝑘
1
∈Z
𝑟

W−(𝑘2+𝑘1𝑠)(𝑙1+𝑙2𝑟)
𝑛

x
𝑠𝑘
1
+𝑘
2

)

= ∑

𝑘
2
∈Z
𝑠

∑

𝑘
1
∈Z
𝑟

W−(𝑘2+𝑘1𝑠)(𝑙1+𝑙2𝑟)
𝑛

x
𝑠𝑘
1
+𝑘
2

.

(12)

Let 𝑚 = 𝑠𝑘
1
+ 𝑘
2
, let 𝑘 = 𝑙

1
+ 𝑙
2
𝑟, and let 𝑚, 𝑘 ∈ Z

𝑛
because

𝑙
1
, 𝑘
1
∈ Z
𝑟
, 𝑙
2
𝑘
2
∈ Z
𝑠
, and 𝑛 = 𝑟𝑠. Then

∑

𝑚∈Z
𝑛

W−𝑚𝑘
𝑛

x
𝑚
= F
𝑑

x (𝑘) . (13)

Now, if 𝑛 = 𝑟𝑠, A ∈ C𝑟×𝑟, and B ∈ C𝑑𝑠×𝑑𝑠, the following
equality [17] is obtained:

B ⊗ A = L𝑛,𝑑
𝑠
(A ⊗ B) L𝑛,𝑑

𝑟
. (14)

From Theorem 2 and (14), the following corollary presents a
matrix factorization of F𝑑

𝑛
such that it permits an implemen-

tation using parallel computing.

Corollary 3. Let 𝑛 = 𝑟𝑠 and let F𝑑
𝑛
∈ C𝑑𝑛×𝑑𝑛 be the block

matrix of DFT for vector-valued signals. Then

F𝑑
𝑛
= L𝑛,𝑑
𝑠
(I
𝑟
⊗ F𝑑
𝑠
) L𝑛,𝑑
𝑟
T𝑛,𝑑
𝑟
(I
𝑠
⊗ F𝑑
𝑟
) L𝑛,𝑑
𝑠
, (15)

where T𝑛,𝑑
𝑟

was defined in Theorem 2.

Algorithm 2 shows a parallel implementation of (15).
𝑟 independent processes in Steps (3)–(5), and 2𝑠 indepen-

dent processes in Steps (6)–(8) and (12)–(14) are observed,
making this approach a parallel operation. A model of
Algorithm 2 is shown in Figure 1.

4.1. Computational Complexity Analysis. In this section, the
computational complexity analysis of (15) is developed. First,
consider the matrix operation L𝑛,𝑑

𝑠
k. The computational

complexity (CC) of L𝑛,𝑑
𝑠
k is O(𝑛𝑑) [8] because it is the

multiplication between a block matrix in C𝑑𝑛×𝑑𝑛 and a block
vector in C𝑑𝑛. But the operation L𝑛,𝑑

𝑠
k can be implemented

with a CC O(𝑠𝑑) (see, e.g., [12, 14]).

Require: x ∈ C𝑑𝑛, where 𝑛 = 𝑟𝑠.
Ensure: y ∈ C𝑑𝑛
(1) y ← L𝑛,𝑑

𝑠
y

(2) A←R
𝑑𝑟,𝑠
{y}

(3) for𝑚 ← 0 : 𝑠 − 1
(4) A(:, 𝑚) ← F𝑑A(:,𝑚)
(5) end for
(6) for𝑚 ← 0 : 𝑠 − 1
(7) A(:, 𝑚) ← D𝑚

𝑟
⋅ A(:, 𝑚)

(8) end for
(9) y ←V{A}
(10) y ← L𝑛,𝑑

𝑟
y

(11) A←R
𝑑𝑠,𝑟
{y}

(12) for𝑚 ← 0 : 𝑟 − 1
(13) A(:, 𝑚) ← F𝑑A(:,𝑚)
(14) end for
(15) y ←V{A}
(16) y ← L𝑛,𝑑

𝑠
y

Algorithm 2: Vector-valued DFT (parallel algorithm).

Let F𝑑
𝑛
∈ C𝑑𝑛×𝑑𝑛 be the block matrix and vector-valued

signal x ∈ 𝑙2(Z
𝑛
,C𝑑), where 𝑛 = 𝑟𝑠. It is known that the CC

of operation y = F𝑑
𝑛
x is O(𝑛2𝑑2) = O(𝑟2𝑠2𝑑2). Now consider

operation y = F𝑑
𝑛
x using (15). If we consider each matrix-

vector multiplication, we obtain the following:

(1) The CC of y
1
= L𝑛,𝑑
𝑠
x is O(𝑠𝑑).

(2) The CC of y
2
= (I
𝑠
⊗ F𝑑
𝑟
)y
1
is O(𝑠𝑟2𝑑2), because it is a

block diagonal matrix multiplication.
(3) The CC of y

3
= T𝑛,𝑑
𝑟
y
2
is O(𝑛𝑑), because T𝑛,𝑑

𝑟
is a

diagonal matrix multiplication.
(4) The CC of y

4
= L𝑛,𝑑
𝑟
y
3
is O(𝑟𝑑).

(5) The CC of y
5
= (I
𝑟
⊗ F𝑑
𝑠
)y
4
is O(𝑟𝑠2𝑑2), because it is a

block diagonal matrix multiplication.
(6) The CC of y = L𝑛,𝑑

𝑠
y
5
is O(𝑠𝑑).

Therefore, the CC of F𝑑
𝑛
x using (15) is

O (𝑠𝑑) + O (𝑠𝑟
2
𝑑
2
) + O (𝑛𝑑) + O (𝑟𝑑) + O (𝑟𝑠

2
𝑑
2
)

+ O (𝑠𝑑) = O (𝑠𝑟 (𝑟 + 𝑠) 𝑑
2
) .

(16)

Thus, the CC of operation F𝑑
𝑛
x is O(𝑟2𝑠2𝑑2) and the CC

of operation F𝑑
𝑛
x using (15) is O(𝑠𝑟(𝑟 + 𝑠)𝑑2). The above

mentioned shows the efficiency of matrix formulation in (15).

5. Implementation and Experimental
Investigation

5.1. General Information. The investigations have been car-
ried out on a computer with multicore processor. The com-
puter consists of 4 cores with Intel Core i7-3632QMCPU
processor, system clock of 2.20GHz, and 8GB of RAM.

The Scientific World Journal 5

The experiment develops the implementation and testing of
Algorithms 1 and 2 with the hypercomplex DFT kernel and
the DFT frame kernel is developed. Algorithm 1 does not use
any parallel implementation, unlike Algorithm 2. A CAZAC
signal in 𝑙2(Z

𝑛
,C𝑑) is used; it is generated using a Wiener

CAZAC signal in 𝑙2(Z
𝑛
) [9] with 𝑑 = 5 and 𝑛 = 𝑟𝑠, where

𝑛 = 1024 = 32 ⋅ 32, 𝑛 = 2048 = 64 ⋅ 32, 𝑛 = 4096 = 64 ⋅ 64,
𝑛 = 8192 = 128 ⋅ 64, and 𝑛 = 16384 = 128 ⋅ 128.

The implementation of Algorithms 1 and 2 to compute
the vector-valued DFT is performed using MATLAB. Algo-
rithm 2 is computed using Parallel Computing Toolbox.
MATLAB uses built-in multithreading and parallelism using
MATLAB workers. Parallelism using MATLAB workers is
used. We can run multiple MATLAB workers (MATLAB
computational engines) on a multicore computer to execute
applications in parallel with the Parallel Computing Toolbox.
This approach allows more control over the parallelism
compared to built-in multithreading. With programming
constructs, such as parallel-for-loops (parfor) and batch,
we write the parallel MATLAB programs of the parallel
framework for the vector-valued DFT.

5.2. Results and Discussion. Let 𝑇
∗
be the execution time of

Algorithm 1 without any parallel implementation, and let 𝑇
𝑝

be the execution time of Algorithm 2, where 𝑝 is the number
of cores. The value of 𝑇

𝑝
needs to be less than that of 𝑇

∗

for two reasons: Algorithm 2 has a parallel implementation
and the matrix multiplication size is different. Algorithm 2 is
computed with matrices in C𝑑𝑟×𝑑𝑟 and C𝑑𝑠×𝑑𝑠. Algorithm 1 is
computed with matrices in C𝑑𝑛×𝑑𝑛, where 𝑛 = 𝑟𝑠.

The computational performance analysis of Algorithm 2
is evaluated using the metrics speedup (or acceleration) and
efficiency. The speedup is the ratio between the execution
times of parallel implementations with one core and parallel
implementations with two or more cores [18]. The speedup
is represented by the formula 𝑆 = 𝑇

1
/𝑇
𝑝
. The efficiency esti-

mates howwell utilized the processors are in solving the prob-
lem compared to how much effort is wasted in communica-
tion and synchronization [18].The efficiency is determined by
the ratio between the speedup and the number of processing
elements, represented by the formula 𝐸 = 𝑇

1
/(𝑝𝑇
𝑝
).

Table 1 shows the execution time, in seconds (s), of both
algorithms. A significant reduction in the parallel execution
time of the vector-valued DFT is observed. Table 1 shows that
Algorithm 1 with hypercomplex kernel for a Wiener CAZAC
signal in 𝑙2(Z

8192
,C5) produces a time of serial execution

𝑇
∗
= 13408 s. Using Algorithm 2, however, we obtain 𝑇

1
=

106.7 (0.80% of 𝑇
∗
), 𝑇
2
= 80.44 s (0.60% of 𝑇

∗
), 𝑇
3
=

57.35 s (0.43% of 𝑇
∗
), and 𝑇

4
= 32.67 s (0.24% of 𝑇

∗
). This

result shows the advantage of using multicore processors
and a parallel computing environment to minimize the high
execution time in the vector-valued DFT. This is because
parallel computing is a form of computation in which many
calculations are carried out simultaneously [19, 20], operating
on the principle that large problems can often be divided
into smaller ones, which are then solved concurrently, and
minimize the execution time [20, 21].The difference between
𝑇
∗
and 𝑇

𝑝
is because 𝑇

𝑝
is computed with matrices in C𝑑𝑟×𝑑𝑟

Table 1: Computing time of Algorithms 1 and 2 (in seconds).

Kernel 𝑝
𝑛

1024 2048 4096 8192 16384

Hypercomplex DFT

∗ 36.80 163.9 853.5 13408 +15000

1 3.142 8.950 18.78 106.7 263.4

2 2.363 4.276 17.25 80.44 180.9

3 1.695 3.222 12.75 57.35 154.7

4 0.983 2.966 6.481 32.67 82.65

DFT frame

∗ 40.50 173.1 881.0 13913 +15000

1 2.438 9.749 20.97 95.29 251.6

2 1.911 5.798 16.38 58.72 179.5

3 1.531 5.126 12.33 57.40 151.4

4 1.199 2.329 5.366 31.46 73.42

Test signal in 𝑙2(Z𝑛,C
𝑑
), where 𝑛 = 𝑟𝑠 and 𝑑 = 5.

𝑝 = ∗ is time execution of Algorithm 1.
𝑝 > 0 is the number of cores.

Table 2: Speedup of Algorithm 2.

Kernel 𝑝
𝑛

1024 2048 4096 8192 16384

Hypercomplex DFT
2 1.333 2.093 1.089 1.326 1.456

3 1.853 2.778 1.473 1.860 1.703

4 3.196 3.017 2.987 3.265 3.187

DFT frame
2 1.275 1.509 1.281 1.623 1.402

3 1.592 1.707 1.701 1.660 1.661

4 2.033 3.757 3.901 3.029 3.426

Test signal in 𝑙2(Z𝑛,C
𝑑
), where 𝑛 = 𝑟𝑠 and 𝑑 = 5.

𝑝 is the number of cores.

Table 3: Efficiency of Algorithm 2.

Kernel 𝑝
𝑛

1024 2048 4096 8192 16384

Hypercomplex DFT
2 0.665 1.046 0.544 0.663 0.728

3 0.463 0.694 0.368 0.465 0.426

4 0.400 0.377 0.362 0.408 0.398

DFT frame
2 0.637 0.755 0.645 0.811 0.701

3 0.530 0.427 0.425 0.415 0.415

4 0.508 0.470 0.489 0.379 0.428

Test signal in 𝑙2(Z𝑛,C
𝑑
), where 𝑛 = 𝑟𝑠 and 𝑑 = 5.

𝑝 is the number of cores.

andC𝑑𝑠×𝑑𝑠. Algorithm 1 is computed with matrices inC𝑑𝑛×𝑑𝑛,
where 𝑛 = 𝑟𝑠.

Table 2 represents the speedup of Algorithm 2. The
acceleration of the vector-valued DFT increases when 𝑝
increases regardless of the value of 𝑛. The results show that,
using the proposed parallel implementation with 𝑝 cores,
where 𝑝 = 2, 3, 4, the speedup to compute the vector-
valued DFT of a Wiener CAZAC signal is 1.09, 1.47, and
2.99, respectively. These results imply that, to get the highest
speedup, one should prefer the approach with four cores.

Table 3 represents efficiency of Algorithm 2. The infor-
mation in this table shows that a good efficiency (greater

6 The Scientific World Journal

than 65%) is reached with 𝑝 = 2. But the efficiency of the
vector-valued DFT decreases (until 36%) when 𝑝 increases
regardless of the value of 𝑛. It is attributed to a decrease in
the share of simultaneous computation of the partial vector-
valued DFT in Algorithm 2 (steps (3)–(5) and (12)–(14)),
which is responsible for the main effect. The results obtained
in Table 3 imply that, to get a better efficiency, one should
prefer the approach with two cores, because we obtain the
highest efficiency.

6. Conclusion

This work presented a parallel framework of vector-valued
DFT for vector-valued discrete-time signals. This mathemat-
ical framework was inspired in the matrix representation of
the Cooley-Tukey FFT algorithm for complex discrete-time
signals, corresponding to the decomposition of the transform
size 𝑛 into the product of two factors 𝑟 and 𝑠, which is
developed in [10, 12]. It was expressed in (15) andAlgorithm2.
This parallel framework was performed in terms of a matrix
representation using a set of block matrix operations: Kro-
necker product, direct sum, stride permutation, vec operator,
and vec inverse operator. These operations contributed to
analysis, design, and implementation in parallel. Two kernels
are used in the vector-valuedDFT: hypercomplexDFT kernel
and DFT frame kernel.

The experimental investigation indicated there are profit
using MATLAB with the Parallel Computing Toolbox in a
computer with multicore processors. First, there was advan-
tage to use multicore processors and a parallel computing
environment to minimize the high execution time (with
hypercomplex DFT kernel, we obtained 𝑇

∗
= 13408 s, 𝑇

1
=

106.7, 𝑇
2
= 80.44 s, 𝑇

3
= 57.35 s, and 𝑇

4
= 32.67 s). Second,

speedup increasedwhen𝑝 increased regardless of the value of
𝑛, and a good efficiency too was obtained when 𝑝 = 2 (above
65%).

As future work, we would like to extend the proposed
parallel framework to vector-valued discrete-time signals in
𝑙
2
(Z
𝑛
,C𝑑), where 𝑛 = 2𝑘, using the idea of Pease algorithm for

complex discrete-time signals [22]. Additionally, we would
like to take advantage of more design tradeoffs of different
approaches besides what have been shown in this paper, for
example, the approach developed in [23].

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by Vicerrectoŕıa de Investigación y
Extensión of Instituto Tecnológico de Costa Rica.

References

[1] B. Wegmann and C. Zetzsche, “Feature-specific vector quanti-
zation of images,” IEEE Transactions on Image Processing, vol. 5,
no. 2, pp. 274–288, 1996.

[2] J. Huang and B.-Q. Lv, “A feasible algorithm for design-
ing biorthogonal bivariate vector-valued finitely supported
wavelets,” Physics Procedia, vol. 25, pp. 1507–1514, 2012.

[3] W. Li, “Vector transform and image coding,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 1, no. 4, pp.
297–307, 1991.

[4] X.-G. Xia and B. W. Suter, “Multirate filter banks with block
sampling,” IEEE Transactions on Signal Processing, vol. 44, no.
3, pp. 484–496, 1996.

[5] S. A. Avdonin and S. A. Ivanov, “Sampling and interpolation
problems for vector valued signals in the Paley-Wiener spaces,”
IEEE Transactions on Signal Processing, vol. 56, no. 11, pp. 5435–
5441, 2008.

[6] M. Vehkapera, S. Chatterjee, and M. Skoglund, “Analysis of
MMSE estimation for compressive sensing of block sparse sig-
nals,” in Proceedings of the IEEE Information Theory Workshop
(ITW ’11), vol. 1, pp. 553–557, IEEE, Paraty, Brazil, October 2011.

[7] J. J. Benedetto and J. J. Donatelli, “Frames and a vector-
valued ambiguity function,” in Proceedings of the 42nd Asilomar
Conference on Signals, Systems and Computers, vol. 1, pp. 8–12,
IEEE, Pacific Grove, Calif, USA, October 2008.

[8] S. J. Sangwine and T. A. Ell, “Complex and hypercomplex
discrete Fourier transforms based on matrix exponential form
of Euler’s formula,” Applied Mathematics and Computation, vol.
219, no. 2, pp. 644–655, 2012.

[9] J. J. Benedetto and J. J. Donatelli, “Ambiguity function and
frame-theoretic properties of periodic zero-autocorrelation
waveforms,” IEEE Journal on Selected Topics in Signal Processing,
vol. 1, no. 1, pp. 6–20, 2007.

[10] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri,
“A methodology for designing, modifying, and implementing
Fourier transform algorithms on various architectures,” Cir-
cuits, Systems, and Signal Processing, vol. 9, no. 4, pp. 449–500,
1990.

[11] D. Rodriguez, J. Seguel, and E. Cruz, “Algebraic methods for
the analysis and design of time-frequency signal processing
algorithms,” in Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS ’93), vol. 1, pp. 196–199, IEEE,
Chicago, Ill, USA, May 1993.

[12] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier
Transform and Convolution, Signal Processing and Digital
Filtering, Springer, Berlin, Germany, 1997.

[13] C. Van Loan, Computational Frameworks for the Fast Fourier
Transform, Frontiers in Applied Mathematics, SIAM, 2012.

[14] F. Franchetti, M. uschel, Y. Voronenko, S. Chellappa, and J.M. F.
Moura, “Discrete Fourier transform on multicore,” IEEE Signal
Processing Magazine, vol. 26, no. 6, pp. 90–102, 2009.

[15] A. Saberi, A. Stoorvogel, and P. Sannuti, Internal and External
Stabilization of Linear Systemswith Constraints, Systems&Con-
trol: Foundations & Applications, Springer, Berlin, Germany,
2012.

[16] A. Shirazinia, S. Chatterjee, and M. Skoglund, “Performance
bounds for vector quantized compressive sensing,” in Proceed-
ings of the International Symposium on Information Theory and
Its Applications (ISITA ’12), pp. 289–293, October 2012.

[17] R. Tolimieri, M. An, C. Lü, and C. Burrus,Mathematics of Mul-
tidimensional Fourier Transform Algorithms, Signal Processing
and Digital Filtering, Springer, Berlin, Germany, 1997.

[18] M. D. McCool, A. D. Robison, and J. Reinders, Structured Par-
allel Programming: Patterns for Efficient Computation, Morgan
Kaufmann Publishers, Elsevier, 2012.

The Scientific World Journal 7

[19] G. S. Almasi and A. Gottlieb, Highly Parallel Computing,
Benjamin-Cummings Publishing Company, 1989.

[20] R. Trobec, M. Vajteric, and P. Zinterhof, Parallel Computing:
Numerics, Applications, and Trends, Springer, 2009.

[21] M. O. Tokhi, M. A. Hossain, and M. H. Shaheed, Parallel Com-
puting for Real-Time Signal Processing and Control, Springer,
Berlin, Germany, 2003.

[22] M. C. Pease, “An adaptation of the fast fourier transform for
parallel processing,” Journal of the ACM, vol. 15, no. 2, pp. 252–
264.

[23] Z. Qiuling, B. Akin, H. E. Sumbul et al., “A 3D-stacked logic-
in-memory accelerator for application-specific data intensive
computing,” in Proceedings of the IEEE International 3D Systems
Integration Conference, pp. 1–7, October 2013.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

