
Costa Rica Institute of Technology

Electronics Engineering School

Karslruhe Institute of Technology

Chair for Embedded Systems

Evaluation of Feature Extraction Techniques for
an Internet of Things Electroencephalogram

Thesis in fulfillment of the requirements to obtain the academic degree of

Licentiate in Electronics Engineering

David Barahona Pereira

Karlsruhe. November 7, 2016

Scanned by CamScanner

Abstract

The emerging paradigm of Internet of Things (IoT) is revolutionizing our life with the

introduction of new services and the improvement of existing applications. IoT is covering

an ever-increasing number of applications in different domains including healthcare. One

specific application in personal healthcare is the monitoring of the electrical activity in the

brain using Electroencephalogram (EEG) with portable IoT devices. Due to portability

and size constraints, most IoT devices are battery-powered which calls for energy-efficient

implementation in both hardware and software along with an efficient use of the often

limited resources.

This work evaluates three different feature extraction techniques for an IoT EEG in terms

of execution time, memory usage and power consumption. The techniques under study

were explored and simulated leading to select FIR, Welch’s method and DWT as the

ones to be evaluated. The techniques were implemented on a MSP432P401R LaunchPad

platform, where an evaluation procedure was developed to asses the code performance.

The implementations were validated against simulated references and also optimized for

speed, code size and power consumption. The result of the performed evaluation provides

a valuable comparison between the techniques which can help any designer in choosing

the right technique based on design objectives and resource constraints.

Keywords: IoT, EEG, feature extraction, FIR, Welch’s method, DWT.

to my mother...

Acknowledgments

First, I would like to thank my thesis advisor Farzad Samie at the Karlsruhe Institute of

Technology (KIT) for letting me be part of his research and for being always attentive

and supportive during the development of the project. Also, I would like to thank my

thesis advisor Renato Rı́molo at the Costa Rica Institute of Technology (ITCR) for all

his recommendations and for always being pending of my progress despite the distance.

I would like to thank all the people that in one way or another made possible for me to

develop my project not only in Germany but also in such a remarkable institution as the

KIT. I want to thank my friend Moises Araya and my teacher Jorge Castro for helping

me find a project but specially for all their support, trust and recommendations. Also,

I would like to thank the ITCR for promoting this kind of experiences and specially to

Gustavo Rojas from the Construction Engineering School for all his help.

Thanks to all my friends who have accompanied me until this point, specially to Esteban

and Adolfo who more than friends have become brothers to me. After all these years of

working together I can be pretty sure that we make a great team together, thank you for

all those endless nights of study and projects but specially for always being there.

Last but not least, I must express my very profound gratitude to my family. I want to

thank them for providing me with unconditional love, unfailing support and continuous

encouragement throughout all my life and years of study. Thank you for being always

my everyday motivation. I would especially like to thank my mother for all her love and

dedication throughout all these years. Thank you for being my best friend and the person

I admire the most, there are no words that can describe how much I love you and how

thankful I feel. This accomplishment would not have been possible without you.

David Barahona Pereira

Karlsruhe. November 7, 2016

Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Document Structure . 3

2 Feature Extraction Techniques in EEG 5

2.1 EEG and Applications . 5

2.2 Signal Processing Path . 7

2.2.1 Preprocessing . 8

2.2.2 Feature Extraction . 8

2.2.3 Classification . 8

2.3 Feature Extraction Techniques . 8

2.3.1 Filter Based Feature Extraction . 9

2.3.2 FFT Based Feature Extraction . 10

2.3.3 DWT Based Feature Extraction . 12

2.3.4 Feature Extraction Techniques Overview 15

3 Simulation and Exploration of Feature Extraction Techniques 17

3.1 Test Signal . 17

3.2 Filter Based Techniques . 18

3.2.1 FIR . 18

3.2.2 IIR . 19

3.2.3 Comparison . 20

3.3 FFT Based Techniques . 21

3.3.1 Periodogram . 21

3.3.2 Welch’s Method . 21

3.3.3 Comparison . 23

3.4 DWT Based Techniques . 23

3.4.1 DWT . 25

3.4.2 WPT . 25

3.4.3 Comparison . 27

3.5 Comparison between techniques . 27

i

ii Contents

4 Hardware Platform and Measurement Procedure 31

4.1 Platform Overview . 31

4.2 Measurement Procedure . 32

4.2.1 Execution Time . 32

4.2.2 Memory Usage . 33

4.2.3 Power Consumption . 34

5 Implementation of Feature Extraction Techniques 39

5.1 CMSIS DSP Software Library . 39

5.2 Microcontroller Implementation . 41

5.2.1 FIR Feature Extraction . 41

5.2.2 Welch’s Method Feature Extraction 43

5.2.3 DWT Feature Extraction . 46

5.3 Optimizations . 50

5.3.1 Execution Time and Memory Usage 50

5.3.2 Power Consumption . 52

6 Evaluation of Feature Extraction Techniques 55

6.1 Execution Time . 55

6.2 Memory Usage . 56

6.3 Power Consumption . 58

6.4 Overall Evaluation . 60

7 Conclusions 61

Bibliography 63

A Acronyms and Abbreviations 67

B Feature Extraction Codes 69

B.1 FIR . 69

B.2 Welch’s method . 72

B.3 DWT . 75

List of Figures

1.1 Stages of the project . 2

2.1 EEG device . 6

2.2 EEG frequency bands . 6

2.3 EEG signal processing path . 7

2.4 Welch’s method procedure . 12

2.5 Single level DWT . 13

2.6 Multilevel DWT . 13

2.7 WPT decomposition . 14

3.1 EEG test signal . 17

3.2 FIR filter response for the Alpha band . 18

3.3 Power for the Alpha band using FIR filter 19

3.4 IIR filter response for the Alpha band . 19

3.5 Power for the Alpha band using IIR filter 20

3.6 Comparison of FIR and IIR . 20

3.7 Periodogram on the EEG signal . 22

3.8 Welch’s method on the EEG signal . 22

3.9 Comparison of periodogram and Welch’s method 23

3.10 Low-pass decomposition filter response for DWT 24

3.11 High-pass decomposition filter response for DWT 24

3.12 DWT decomposition of the EEG signal . 25

3.13 WPT decomposition of the EEG signal . 26

3.14 Comparison of DWT and WPT . 27

3.15 Comparison of filter and DWT based techniques 28

3.16 Comparison of filter, FFT and DWT based techniques 28

4.1 CCS Breakpoints tab . 32

4.2 CCS Memory Allocation tab . 34

4.3 Profile tab in ET mode . 35

4.4 Power tab in ET mode . 36

4.5 Energy tab in ET mode . 36

4.6 Profile tab in ET+ mode . 37

4.7 States tab in ET+ mode . 37

iii

iv List of Figures

5.1 FIR feature extraction algorithm sequence 41

5.2 Simulated and microcontroller comparison for FIR 42

5.3 Validation error for FIR . 42

5.4 Welch’s method feature extraction algorithm sequence 43

5.5 Rectangular window . 44

5.6 Simulated and microcontroller comparison for Welch’s method 45

5.7 Validation error for Welch’s method . 45

5.8 DWT method feature extraction algorithm sequence 46

5.9 Bookkeeping vector structure for DWT . 47

5.10 Rearrangement of coefficients process for DWT 48

5.11 Simulated and microcontroller comparison for DWT 48

5.12 Implemented bookkeeping vector for DWT 49

5.13 Validation error for DWT . 49

5.14 Compiler optimization view . 50

5.15 Code size for different optimization level settings 51

5.16 Code size for different code size and speed trade-off settings 51

5.17 Power measurements for optimization . 53

5.18 Energy measurements for optimization . 54

6.1 Execution time evaluation . 56

6.2 Flash memory usage evaluation . 57

6.3 SRAM memory usage evaluation . 57

6.4 Power consumption evaluation . 59

6.5 Energy consumption evaluation . 59

List of Tables

2.1 Cognitive states related to EEG frequency bands 7

2.2 Feature extraction techniques comparison 16

3.1 Bands obtained using DWT . 25

3.2 Bands obtained using WPT . 26

5.1 Validation percentage error for FIR . 43

5.2 Validation percentage error for Welch’s method 45

5.3 Validation percentage error for DWT . 49

5.4 Compiler optimization settings . 51

5.5 Speed optimization . 52

5.6 Code size optimization . 52

5.7 Power measurements for optimization . 53

5.8 Energy measurements for optimization . 54

6.1 Execution time evaluation . 55

6.2 Memory usage evaluation . 57

6.3 Power consumption evaluation . 58

6.4 Overall evaluation of feature extraction techniques 60

v

vi List of Tables

Chapter 1

Introduction

The Internet of Things for Healthcare group of the Chair for Embedded Systems (CES)

at the Karlsruhe Institute of Technology (KIT) is devoted to the research of solutions

and novel techniques to address challenges in Internet of Things (IoT) and particularly,

wearable healthcare monitoring systems. Wearable healthcare monitoring systems can be

used to monitor patients who are out of the hospital, they can measure daily or sport

activities, and they can even keep track of sleep patterns and stress levels. Part of the

current research activities at Internet of Things for Healthcare group is the development

of a wearable IoT Electroencephalogram (EEG) prototype.

An EEG is a device that is able to measure and record the electrical activity of the brain.

EEG is commonly found in medical applications, however its use has been extended to

other fields such as Brain Computer Interfaces (BCIs) in tasks like controlling a robotic

arm by imagining hand movements [27]. An IoT EEG is intended to be a portable

and hence battery-powered device, therefore it is important to find the best way to face

inherent challenges in computation capability and energy capacity. One of the stages in

the operation of an EEG is feature extraction, this stage uses several signal processing

techniques to get relevant information about the brain activity usually by measuring

power in different frequency bands. Since there are many techniques that can be used in

feature extraction, it is important to compare them in order to develop a criteria about

which can be better suited to face the previously mentioned challenges.

This work evaluates different feature extraction techniques from perspectives such as

execution time, memory usage and power consumption in a microcontroller platform. In

order to achieve that goal, the process depicted in Figure 1.1 can be followed. There are

mainly three different approaches that can be used for feature extraction such as filtering,

Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT). However, there

are plenty of feature extraction techniques that use one or even combinations of those

approaches. Therefore, the first stage of the solution involves an extensive investigation

about which are the most relevant techniques that use either filters, FFT or DWT for

feature extraction, as well as their characteristics and possible optimization schemes.

1

2

The simulation stage uses the findings of the previous investigation to explore how each

of the techniques under study behaves in the presence of a real EEG signal. The goal

is to consider the characteristics of each technique and the results from the simulations

to select three techniques for implementation, one using filters, one using FFT and one

using DWT. A comparison between techniques is performed in order to make sure that

they all provide similar information and therefore work correctly. The simulation results

will also work as a reference to validate the implementations.

The selected platform for the implementation is a MSP432P401R LaunchPad from Texas

Instruments which incorporates a microcontroller designed for low-power applications.

In the platform setup stage, the goal is to find a procedure to measure the parameters

that will be evaluated. A procedure to measure execution time, power consumption and

memory usage is developed in this stage.

The implementation stage is the core of the solution and it consists in implementing each

selected technique in the microcontrolller platform. Here, the correct behavior of each

technique needs to be validated and also since the main approach is to face computation

and power challenges, possible optimizations must be carried out as well.

In the final stage, execution time, power consumption and memory usage are measured

using the procedure developed in the setup stage. The results are documented and serve

to compare each technique in order to evaluate how they fit in the final design of the

device.

Investigation

Simulation

Platform setup

Implementation

Evaluation

Figure 1.1: Stages of the project

1 Introduction 3

1.1 Document Structure

This document is organized as follows:

Chapter 2 reviews EEG fundamentals, the commonly used signal processing path and

delves into feature extraction techniques. Theoretical background for filters, FFT and

DWT is provided and also techniques that use those approaches are explained emphasizing

the most relevant characteristics, advantages and disadvantages.

Chapter 3 provides simulations for the techniques under study in order to show how they

perform in the presence of a real EEG signal. It also takes those results and the ones of

the investigation stage to decide which techniques are chosen for implementation.

Chapter 4 provides a brief introduction of the low-power microcontroller platform under

use and its characteristics. It also states the procedure to follow for measuring execution

time, power consumption and memory usage.

Chapter 5 shows the approach taken for each implementation along with results that

validate that they behave as intended. Optimizations carried out for each of the metrics

under test are also explained in this chapter.

Chapter 6 provides the results of the measurements for each technique and makes an

analysis to evaluate the implementations and form a criteria about how each technique

fits in the design of an IoT EEG.

Chapter 7 concludes the document and provides suggestions for future work.

4 1.1 Document Structure

Chapter 2

Feature Extraction Techniques in EEG

In order to understand feature extraction techniques it is important to set a background

of what is an EEG and how it works. This chapter provides some basic notions of what

is an EEG and which is the signal processing path commonly used to deal with brain

activity measurements. It provides not only a theoretical background for filters, FFT and

DWT approaches but also discusses the most common techniques that makes use of those

approaches. Finally, it makes a comparison of the techniques by exploring characteristics,

advantages and disadvantages.

2.1 EEG and Applications

Human body imaging techniques play a crucial role in modern medicine. Electrobiological

measurements can be divided as electrocardiography (ECG), electromyography (EMG),

electroencephalography (EEG), magnetoencephalography (MEG), electrogastrography

(EGG) and electrooculography (EOG).

An EEG is a test device used to evaluate the electrical activity in the brain. Since brain

cells communicate with each other through electrical impulses, EEG can be used to detect

potential problems associated with this activity. The test is typically noninvasive, it tracks

and records brain wave patterns through a set of electrodes attached to the scalp with

wires as depicted in Figure 2.1.

Measurements given by an EEG can be used to rule out various conditions, including

seizure disorders (such as epilepsy), a head injury, encephalitis (an inflammation of the

brain), a brain tumor, encephalopathy (a disease that causes brain dysfunction), memory

problems, sleep disorders, stroke, dementia and many others. The use of this device has

been extended to other fields such as social interaction [4], marketing [5], psychology [28]

or BCIs [27] [33].

5

6 2.1 EEG and Applications

Figure 2.1: EEG device. Source: www.saintlukeshealthsystem.org

Measurements taken from an EEG consist of an electrical wave that varies in time, much

like a sound signal or a vibration. As such, it contains frequency components that can be

measured and then analyzed, these frequency components have interesting and valuable

properties. As shown in Figure 2.2, brain waves have been categorized according with

their frequency range into four basic groups known as: Delta, Theta, Alpha and Beta.

0 100 200 300 400 500
−100

−50

0

50

100
Delta Band (0.5 Hz − 4 Hz)

Sample

V
ol

ta
ge

 (
uV

)

0 100 200 300 400 500
−50

0

50
Theta Band (4 Hz − 8 Hz)

Sample

V
ol

ta
ge

 (
uV

)

0 100 200 300 400 500
−40

−20

0

20

40
Alpha Band (8 Hz − 13 Hz)

Sample

V
ol

ta
ge

 (
uV

)

0 100 200 300 400 500
−100

−50

0

50

100
Beta Band (+13 Hz)

Sample

V
ol

ta
ge

 (
uV

)

Figure 2.2: EEG frequency bands obtained by band-pass filtering an EEG signal

2 Feature Extraction Techniques in EEG 7

Most applications generally focus on the spectral content of EEG, that is, the type of

neural oscillations that can be observed in EEG signals [7]. Table 2.1 shows the frequency

range of each brain wave and also the specific brain activity associated with each band.

Table 2.1: Cognitive states related to EEG frequency bands

Band Frequency range (Hz) Brain activity

Delta 0.5-4 Deepest meditation and dreamless sleep

Theta 4-8 Light sleep

Alpha 8-13 Relaxation

Beta +13 Consciousness

2.2 Signal Processing Path

Most modern applications follow a common path for EEG signal processing as depicted

in Figure 2.3. Raw EEG signals go to a preprocessing stage mostly to deal with artifacts

and noise. Then, relevant features about the brain activity are extracted and finally those

features are classified to determine a mental state.

Preprocessing

Raw EEG

Feature extraction

Classification

Output

Figure 2.3: EEG signal processing path

8 2.3 Feature Extraction Techniques

2.2.1 Preprocessing

The preprocessing stage can include the acquisition of the signal, removal of artifacts,

averaging, thresholding of the output, enhancement of the resulting signal, and finally,

edge detection. The most critical step in this stage and in many others signal processing

applications is the removal of artifacts. There are many sources of artifacts in recording

raw EEG signals [15]. They can be defined as disturbances that may occur during the

signal acquisition and that can alter the analysis of signals themselves. Useful features

of the original signal can be severely affected if noise is not properly treated. Some

sources of artifacts can be muscular activities, blinking of eyes during the signal acquisition

procedure and power line electrical noise.

2.2.2 Feature Extraction

It is difficult to extract useful information from EEG signals just by observing them in the

time domain. Therefore, there are many advanced signal processing techniques that can

be used to extract relevant features from those signals [6] [12]. The choice of a particular

technique is usually tied to the application under study and specific requirements.

Feature extraction aims at describing relevant information about the brain activity by an

ideally small number of relevant values. All extracted features are usually arranged into a

vector, known as a feature vector, which is used later for the brain activity classification.

There are three main sources of information that can be extracted from EEG readings:

spatial information (for multichannel EEG), spectral information (power in frequency

bands) and temporal information (time windows based analysis) [9].

2.2.3 Classification

The last stage is denoted as classification and it consists of assigning a class to a feature

vector corresponding to the mental state. Just as for the feature extraction stage, there are

many classification methods that may suit a specific implementation better than others.

In [31], a comparison of performance for different classification methods for EEG based

BCIs is proposed.

2.3 Feature Extraction Techniques

Filtering, FFT and DWT are commonly used approaches in feature extraction. These

approaches are discussed including a theoretical background, advantages, disadvantages

as well as possible variations.

2 Feature Extraction Techniques in EEG 9

2.3.1 Filter Based Feature Extraction

Filters are devices that allow some signal frequencies applied at their input terminals to

pass through to their output terminals with little or no reduction in the signal level. There

are analog and digital implementations of filters and the use of one or another will depend

of the nature of the signals in the system whether there are continuous or digital signals.

Digital filters are systems commonly used in signal processing to deal with discrete time

signals. They often consist of an analog to digital converter, a processing stage and a

digital to analog converter.

One popular way to compute band power features from an EEG signal is to use band-pass

filters to extract each desired band to later estimate energy. The process to follow is to

first take an interval of the signal, e.g. 250 ms [23], then band-pass the EEG signal to each

band of interest, square each sample and finally average the signal over several consecutive

samples. This approach is commonly found in BCI research, e.g. in OpenViBE software

[26] this is the method performed by default.

There are two types of digital filters, each with advantages and disadvantages: the Finite

Impulse Response (FIR) filters and the Infinite Impulse Response (IIR) filters [32]. FIR

filters have no feedback so their impulse response is of finite duration because it settles

to 0 after some time. For an FIR filter of order N , the output sequence consists of a

weighted sum of past input values:

y[n] =
N∑
i=0

bix[n− i] (2.1)

where:

y[n] = output signal

x[n] = input signal

N = filter order

bi = filter coefficients

FIR filters are not complex and they are used in applications in which phase characteristics

are very important. These filters are always stable and show a linear phase response. They

exhibit a delay that could be critical in certain applications and also they usually have a

high order since they use a lot of inputs to calculate the output. A sharp fall-off can be

attained if a high order filter is used.

10 2.3 Feature Extraction Techniques

In contrast to FIR filters, IIR filters have feedback and their impulse response does not

become exactly 0 past a certain point, but continues indefinitely. The output depends

not only of past input values but also from past output values:

y[n] =
N∑
i=0

bix[n− i] +
M∑
j=0

ajy[n− j] (2.2)

where:

y[n] = output signal

x[n] = input signal

N = feedforward filter order

M = feedback filter order

bi = feedforward filter coefficients

ai = feedback filter coefficients

IIR filters are more complex and are well suited in applications where a sharp fall-off or

phase is not critical but when flat pass-bands and stop-bands are important. They exhibit

a smaller delay than FIR and use less elements to calculate the output. However, they

show a non-linear phase response and can become unstable. For both types of filters, the

desired response is given by the set of coefficients that multiply each past input or output.

2.3.2 FFT Based Feature Extraction

Fourier analysis is a popular signal processing approach to go from time domain signals to

frequency domain signals or vice versa. This analysis can be applied to both continuous

and discrete time signals. It relays on the principle that every signal can be represented or

approximated by sums of trigonometric functions [22]. FFT is an algorithm that computes

the Discrete Fourier Transform (DFT) of a sequence, or its inverse. It produces the exact

same result as evaluating the DFT definition directly with the difference that is much

faster.

2 Feature Extraction Techniques in EEG 11

The DFT is defined by the formula:

Xk =
N−1∑
n=0

xne
−2πikn
N

k=0,...,N−1 (2.3)

where:

Xk = DFT of xn

xn = input sequence

N = elements in input sequence

FFT is commonly used in EEG to estimate Power Spectral Density (PSD). PSD refers

to the spectral energy distribution that would be found per unit frequency. It can be

computed by applying FFT directly on the signal or also by transforming the estimated

autocorrelation sequence. In [20] a comparison of PSD estimation methods for EEG is

shown. Among the techniques that use FFT for feature extraction, the periodogram and

Welch’s method are two of the most popular and commonly exploited.

The easiest approach to compute PSD is the periodogram. It consists of a frequency

decomposition and is given by the modulus squared of the Fourier transform of the signal:

S(f) =
∆t

N

∣∣∣∣∣∣
N−1∑
n=0

xne
−2πikn
N

∣∣∣∣∣∣
2

(2.4)

where:

S(f) = PSD of xn

∆t = space between samples

xn = input sequence

N = elements in input sequence

Given that EEG signals are usually finite and non-periodic, the periodogram can produce

spurious artifacts in undesired bands. One workaround to deal with this issue is to apply

a window function on the whole signal considering that there is some information loss as

the window would smoothly damp the signal to zero on each end [6].

12 2.3 Feature Extraction Techniques

On the other hand, Welch’s method is an improvement on the standard periodogram [10].

It is based on the use of overlapping windows to the signal in which a periodogram is

calculated for each window and then those periodograms are averaged between them to

compute PSD. This procedure is depicted in Figure 2.4. This method reduces variance

and hence noise in the estimated power spectra in exchange for reducing the frequency

resolution [1].

Periodogram Periodogram Periodogram Periodogram

Averaging

Time (s)

Voltage (V)

Figure 2.4: Welch’s method procedure

2.3.3 DWT Based Feature Extraction

A wavelet is mathematical function that shows an oscillation with an amplitude that

begins at 0, increases, and then decreases back to 0. Those functions have interesting

features that make them useful for signal processing tasks. A wavelet transform is just a

representation of a function by a certain orthonormal series generated by a wavelet [2].

Wavelet approach is very common in EGG signal analysis [17] [18] [25]. This analysis

aims to decompose EEG signals into a certain level and then sub-band energies contained

at the last or previous levels to use them as features. The level of decomposition is

selected based on the dominant frequency components of the signal. That means that

certain frequency ranges for the sub-bands can be achieved depending on the sampling

rate. Several mother wavelets can be used [2], however Daubechies 4 wavelet (db4) is

a popular choice [19] [21] due to its near optimal time-frequency localization properties

and smoothing features that make suitable detecting changes on EEG signals. Wavelet

analysis can be performed using DWT or Wavelet Packet Transform (WPT).

2 Feature Extraction Techniques in EEG 13

DWT is a decomposition that uses discrete sampled wavelets and is usually implemented

using filters. Figure 2.5 shows a single level DWT implementation. The signal goes

through a high-pass filter and a low-pass filter that are related as quadrature mirror

filters. The high-pass filter provides details coefficients and the low-pass filter provides

approximation coefficients. After filtering, since half of the frequencies have been removed,

a subsampling is applied to reduce the amount of data because only half of the samples

are needed to represent the new signal according to Nyquist’s sampling theorem [22].

h[n]

g[n] 2

2x[n]

Approximation
coefficients

Detail
coefficients

g[n] = low-pass filter
h[n] = high-pass filter
 2 = subsampling

Figure 2.5: Single level DWT decomposition of a signal

There are also multilevel approaches that aim a better frequency resolution as depicted

in Figure 2.6. In these implementations another DWT is applied to the approximation

coefficients [34].

h[n]

g[n] 2

2x[n]

h[n]

g[n] 2

2

h[n]

g[n] 2

2

Level 1
coefficients

Level 2
coefficients

Level 3
coefficients

g[n] = low-pass filter
h[n] = high-pass filter
 2 = subsampling

Figure 2.6: A multilevel DWT decomposition of a signal

Since DWT is a time-frequency domain method, it is suitable to study non-stationary

signals like the ones obtained from EEG. Time domain and frequency domain methods

like filters and FFT approaches are not usually well suited to handle this type of signals.

14 2.3 Feature Extraction Techniques

Wavelets have some slight benefits over Fourier transforms in reducing computations when

examining specific frequencies. This method uses varying window sizes so it does not suffer

the time-frequency resolution trade-off inherent to other time-frequency approaches [35].

WPT is a variation of the classic DWT that uses more filters in the implementation. The

difference with the simple DWT is that this approach computes a DWT not only in the

approximation coefficients but also in the details coefficients for each level, building a

binary tree. A WPT decomposition is shown in Figure 2.7.

g[n] 2

x[n]

h[n]

g[n] 2

2

h[n]

g[n] 2

2

h[n]

g[n] 2

2

h[n] 2

h[n]

g[n] 2

2

h[n]

g[n] 2

2

h[n]

g[n] 2

2

Level 3
coefficients

g[n] = low-pass filter
h[n] = high-pass filter
 2 = subsampling

Figure 2.7: A multilevel WPT decomposition of a signal

WPT offers the possibility of decomposing the signal into frequency bands of various sizes,

which is useful in EEG to select bands for individual subjects. This method improves

frequency resolution in exchange of increasing complexity when compared to DWT. For

simple applications it can provide more information than is actually needed. Sometimes

the decomposed sub-bands frequencies might not be the best, therefore automated and

adaptive WPT approaches have been studied [34] for complex and modern systems.

2 Feature Extraction Techniques in EEG 15

2.3.4 Feature Extraction Techniques Overview

The performed analysis can lead to have a better picture of how filters, FFT and DWT

can be used as feature extraction techniques and how they possess certain characteristics

that can be exploited depending on a specific application.

Filtering analysis is performed in the time domain and may not be the best to deal with

non-stationary signals. The performance of a filter is tied its order and the type of filter.

FIR filters are fairly simple, always stable and show a linear phase response, however

they have a delay that could be critical in certain applications and also they are not very

efficient since they use a lot of inputs to calculate the output. On the other side, IIR

filters are more efficient since they use less inputs to calculate the output and therefore

they have only a small delay, however they are more complex, they can become unstable

and they modify the output because of the non-linearity of the phase response.

FFT analysis is performed in the frequency domain and just like filtering is not well suited

for non-stationary signals. The periodogram is a low complex mechanism of computing

PSD with a good frequency resolution, however it comes to a cost of producing spurious

artifacts that could add a lot of noise to the signal. Welch’s method is a variation of the

periodogram that manages to reduce noise in the computation while sacrificing frequency

resolution.

Finally, DWT is a technique that performs in both time and frequency domain and is well

suited for non-stationary signals. There must be a careful selection of the mother wavelet

function and decomposition level. DWT is less complex and has less frequency resolution

than the WPT that can achieve a better decomposition and therefore a better resolution

by using more filters but adding complexity to the design.

Table 2.2 summarizes characteristics, the main advantages and disadvantages of each of

the techniques under study.

16 2.3 Feature Extraction Techniques

Table 2.2: Feature extraction techniques comparison

Technique Characteristics Variation Advantages Disadvantages

Filtering

Time domain

analysis
FIR

Low complexity Not very efficient

Stability

Large delay
Linear phase

response

Not well suited for

non-stationary

signals
IIR

Efficient High complexity

Small delay

May become

unstable

Non-linear

phase response

FFT

Frequency domain

analysis Periodogram

Low complexity
Can produce

spurious artifactsGood frequency

resolution

Not well suited for

non-stationary

signals

Welch’s

method
Noise reduction

Sacrifices frequency

resolution

Medium complexity

DWT

Time-frequency

domain analysis

DWT Low complexity
Variable frequency

resolution
Well suited for

non-stationary

signals

Needs to select a

mother wavelet
WPT

Good frequency

resolution
High complexity

Chapter 3

Simulation and Exploration of Feature

Extraction Techniques

In this chapter a set of MATLAB [16] simulations are presented in order to explore the

behavior of the techniques studied in Chapter 2. For each technique two approaches were

individually tested and then compared to select one to be implemented and evaluated in

a microcontroller. Even though each technique provides information about the bands in

different manners, they are compared in order to verify that they all provide similar and

correct information. Lastly, the results of the simulations will be used to later validate the

implementations. Every power or power density measurement for the frequency bands is

normalized to a 1 Ω resistor for simplicity.

3.1 Test Signal

The signal in Figure 3.1 was selected in order get more representative simulations.

0 50 100 150 200 250 300 350 400 450 500
−150

−100

−50

0

50

100

150
EEG Signal

Sample

V
ol

ta
ge

 (
uV

)

Figure 3.1: EEG test signal

17

18 3.2 Filter Based Techniques

The signal was taken from a dataset created and contributed to PhysioNet [11] by the

developers of the BCI2000 [29] [30] instrumentation system that was used to make these

recordings. The experimental procedure for the measurements can be consulted in [24].

The selected input signal was sampled at 160 Hz, with 512 samples and hence a duration

of 3.2 s.

3.2 Filter Based Techniques

FIR and IIR approaches are individually simulated and then compared. The procedure

to use filters as feature extraction technique is to pass the EEG signal through a set of

band-pass filters to later compute power and finally to average it over time to reduce

noise. The result is a time domain representation of power for each band.

Each filter must be designed separately since all of them have different cut-off frequencies

depending on the band of interest. The order of the filter must be selected in order to

get a good trade-off between complexity and performance. The criteria to design the

filters was the get the lowest order that ensured an attenuation equal or less than 3 dB in

the pass-band. Power was computed just by squaring the voltage reading and a moving

average filter was applied to the power signal in order to reduce noise.

3.2.1 FIR

The designed FIR filter is of order 60, so it has 61 taps. The magnitude and phase

response for the filter designed for the Alpha band can be observed in Figure 3.2, the

same approach was taken with the other bands.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−500

0

500

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 3.2: FIR filter response for the Alpha band

3 Simulation and Exploration of Feature Extraction Techniques 19

After passing the input signal through the filter, power is computed and averaged over

time to get the power reading shown in Figure 3.3

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700
Alpha Band Power (8 Hz − 13 Hz)

Sample

P
ow

er
 (

pW
)

Figure 3.3: Power for the Alpha band using FIR filter

3.2.2 IIR

The same design approach was used for IIR filters. In this case, the filter is of order 3 with

a Butterworth response that is intended to have a frequency response as flat as possible

in the pass-band. The magnitude and phase response of the filter is shown in Figure 3.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−400

−200

0

200

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 3.4: IIR filter response for the Alpha band

20 3.2 Filter Based Techniques

The power signal for the Alpha band is depicted in Figure 3.5

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700
Alpha Band Power (8 Hz − 13 Hz)

Sample

P
ow

er
 (

pW
)

Figure 3.5: Power for the Alpha band using IIR filter

3.2.3 Comparison

A comparison of the two filters is presented. Figure 3.6 shows power for FIR and IIR

filters working in the Alpha band.

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700
Alpha Band Power (8 Hz − 13 Hz)

Sample

P
ow

er
 (

pW
)

FIR
IIR

Figure 3.6: Comparison of FIR and IIR

3 Simulation and Exploration of Feature Extraction Techniques 21

The power plot shows that the shape of both curves is almost identical with slightly

differences. There is a small difference in amplitude that is associated to a small variation

between the gain of the filters in the pass-band, the magnitude response of the IIR filter is

not as sharp as the FIR counterpart so it means there is more gain in certain frequencies.

There are also small differences in shape due to the linearity of the phase response,

however those differences are not critical. Finally, there is a small time shift as expected

since IIR has a smaller delay than FIR. Since both approaches showed similar results

and the observed differences are not critical for the application, FIR is the algorithm to

be implemented since it is able to get satisfactory results with much less complexity in

implementation than IIR.

3.3 FFT Based Techniques

Periodogram and Welch’s method are also simulated and compared as feature extraction

techniques. Both approaches aim to compute PSD for different frequencies. The result is

a frequency domain representation of power in which each frequency band is contained in

a finite amount of samples depending on the frequency resolution. Frequency resolution

will depend of the number of points used to compute the FFT to the whole signal or to

a time window in the signal. Power after the FFT is normalized so the units of the PSD

are W/Hz, however it is usually represented in dB/Hz by taking the base 10 logarithm of

the power.

3.3.1 Periodogram

A simple periodogram can be applied to the EEG signal in order to compute PSD. In

this case the periodogram definition given in equation 2.4 was applied to the input signal,

using a 512 points FFT. Therefore, for this approach the output has 256 samples with a

frequency resolution of 0.3125 Hz/sample. The results of the simulation can be observed

in Figure 3.7.

3.3.2 Welch’s Method

Welch’s method is also tested for PSD computation and in this case a rectangular window

of 128 samples and a 50% overlap is used in order to reduce complexity. A 128 points

FFT is computed for each window resulting in an output with 64 samples and therefore

a frequency resolution of 1.25 Hz/sample. The results can be observed in Figure 3.8.

22 3.3 FFT Based Techniques

0 50 100 150 200 250
−160

−150

−140

−130

−120

−110

−100

−90

−80
Power Spectral Density

Sample

M
ag

ni
tu

de
 (

dB
/H

z)

Figure 3.7: Periodogram on the EEG signal

0 10 20 30 40 50 60
−135

−130

−125

−120

−115

−110

−105

−100

−95

−90
Power Spectral Density

Sample

M
ag

ni
tu

de
 (

dB
/H

z)

Figure 3.8: Welch’s method on the EEG signal

3 Simulation and Exploration of Feature Extraction Techniques 23

3.3.3 Comparison

A comparison of the periodogram and Welch’s method is depicted in Figure 3.9.

0 50 100 150 200 250
−160

−140

−120

−100

−80
Periodogram’s Power Spectral Density

Sample

M
ag

ni
tu

de
 (

dB
/H

z)

0 10 20 30 40 50 60
−140

−120

−100

−80
Welch’s Method Power Spectral Density

Sample

M
ag

ni
tu

de
 (

dB
/H

z)

Figure 3.9: Comparison of periodogram and Welch’s method

Both plots depict a similar shape with some differences. As expected, the periodogram

provides a good frequency resolution in trade of a noisy reading. On the other hand,

Welch’s method frequency resolution is smaller but the plot has reduced variance and

the power is not as noisy as the one from the periodogram. The noise present in the

periodogram reading can provide erroneous information about the brain activity, Welch’s

method is able to provide more accurate readings and can also supply information about

each band using less points. Frequency resolution can be adjusted only by changing

the window size and since it is not very complex when compared to the periodogram

as it only includes some extra windowing and averaging, it is the selected method to be

implemented.

3.4 DWT Based Techniques

Lastly, DWT and WPT are compared as wavelet based feature extraction techniques.

Wavelet approaches lay on the principle of performing a decomposition through a set of

high-pass and low-pass filters in order to get signals that relate to certain frequency ranges,

if those ranges are calculated to be similar to the EEG frequency bands then power can

be computed as well. The result is a time-frequency domain representation of power in

which each band is contained in a finite amount of samples depending on the method and

decomposition level. The mother wavelet is directly related to the filter coefficients and

response. The mother wavelet for simulations is db4, the magnitude and phase response

for the decomposition filters are shown in Figures 3.10 and 3.11 respectively.

24 3.4 DWT Based Techniques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−500

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−300

−200

−100

0

100

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 3.10: Low-pass decomposition filter response for DWT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−100

0

100

200

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−300

−200

−100

0

100

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 3.11: High-pass decomposition filter response for DWT

3 Simulation and Exploration of Feature Extraction Techniques 25

3.4.1 DWT

In order to use DWT, a decomposition level must be selected depending on the sampling

frequency. Since the signal is sampled at 160 Hz the decomposition level suited to extract

the desired bands is 4. Table 3.1 shows which frequency bands can be obtained in each

level and the amount of samples that relate to each band.

Table 3.1: Bands obtained using DWT

Level Frequency (Hz) Samples Related band

4
0-5 38 Delta

5-10 38 Theta

3 10-20 70 Alpha

2 20-40 133
Beta

1 40-80 259

The resulting power signal from the decomposition is shown in Figure 3.12 and it is

formed by the approximation and details coefficients of the last level followed by the

details coefficients of the rest of the levels.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12
x 10

4 EEG Signal Power

Samples

M
ag

ni
tu

de
 (

pW
)

Figure 3.12: DWT decomposition of the EEG signal

3.4.2 WPT

In the WPT, since approximation and details coefficients are decomposed in each level,

the amount of nodes in the last level is 2N where N is the decomposition level. In this

case a decomposition of level 4 is well suited to extract the desired frequency bands, Table

3.2 shows the frequency bands that can be obtained using WPT.

26 3.4 DWT Based Techniques

Table 3.2: Bands obtained using WPT

Frequency (Hz) Related and

0-5 Delta

5-10 Theta

10-15 Alpha

15-20

Beta

20-25

25-30

30-35

35-40

40-45

45-50

50-55

55-60

60-65

65-70

70-75

75-80

The amount of samples for each band is the same and is equal to the number of samples

in the last decomposition level of a DWT of the same level. The resulting power signal

from the decomposition is shown in Figure 3.13.

0 100 200 300 400 500 600
0

2

4

6

8

10

12
x 10

4 Power in WPT Decomposition

Samples

M
ag

ni
tu

de
 (

pW
)

Figure 3.13: WPT decomposition of the EEG signal

3 Simulation and Exploration of Feature Extraction Techniques 27

3.4.3 Comparison

Fugure 3.14 shows a comparison between DWT and WPT.

0 100 200 300 400 500 600
0

5

10

15
x 10

4 DWT Decomposition Power

Samples

M
ag

ni
tu

de
 (

pW
)

0 100 200 300 400 500 600
0

5

10

15
x 10

4 WPT Decomposition Power

Samples

M
ag

ni
tu

de
 (

pW
)

Figure 3.14: Comparison of DWT and WPT

Both plots show very similar results with small differences in the two upper bands. Just

as expected, the two lower bands look identical since the signal goes through the exact

same filters, the approximation and detail coefficients for the last level are common for

DWT and WPT as it can be noticed by looking at Figures 2.6 and 2.7. The two upper

bands do not differ much, they provide the same information but differently distributed

because of differences in frequency resolution between techniques as it can be appreciated

in Tables 3.1 and 3.2. Since both approaches provided similar results and because DWT

is considerably less complex to implement than WPT, it is the last selected technique.

3.5 Comparison between techniques

Since filter, FFT and DWT based techniques provide information about the frequency

bands in different manners, it is useful to find a way compare them in order to verify that

they provide similar and therefore correct information. Filter and DWT based approaches

work in the time and time-frequency domain respectively. However, they both end up

providing a representation of power over time with different resolutions. A comparison of

both approaches can be observed in Figure 3.15.

28 3.5 Comparison between techniques

0 50 100 150 200 250 300 350 400 450 500
0

2000

4000

6000

8000
Alpha Band Power from FIR

Sample

P
ow

er
 (

pW
)

0 5 10 15 20 25 30 35 40
0

5

10

15
x 10

4 Alpha Band Power from DWT/WPT

Sample

P
ow

er
 (

pW
)

Figure 3.15: Comparison of filter and DWT based techniques

The power computed for the FIR is made up of 512 samples and it includes frequencies

from 0.5 to 4 Hz. The DWT/WPT approach is made up of the first 38 samples of the

output array corresponding to the Alpha band and it includes frequencies from 0 to 5 Hz

because of the resolution of the method. Even thought there are differences in resolution

and frequency ranges, both plots appear to provide similar information. Scale differences

are due to variations in the gain of the filters.

FFT approaches work in the frequency domain and they can not be compared directly

to the rest. One way to compare this approach with the other two is to move the time

signals computed with the filters and DWT to the frequency domain by calculating PSD.

Figure 3.16 shows a comparison of PSD for each approach.

0 2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500
Alpha Band PSD

Sample

M
ag

ni
tu

de
 (

pW
/H

z)

FIR
Periodogram
DWT/WPT

Figure 3.16: Comparison of filter, FFT and DWT based techniques

3 Simulation and Exploration of Feature Extraction Techniques 29

In this case, a periodogram was computed to the time signals obtained with the filters and

DWT decomposition for the Alpha band, while for the periodogram the first 16 samples

were taken corresponding to that band as well. It can be noticed that all the plots follow

a not identical but similar shape too. Scale and shape differences are due to amplitude

variations in time signals because of filter gains and also because of frequency resolution.

This results evidence that even though each approach provide information about the

bands in different manners, they all provide similar and therefore correct information.

This comparison turns the results a reliable tool to later validate the implementations.

30 3.5 Comparison between techniques

Chapter 4

Hardware Platform and Measurement

Procedure

Before running into implementations it is important to set a procedure to ensure that the

techniques can be properly evaluated. This chapter provides a brief introduction about

the platform under use and its main characteristics. It also estates the procedure to follow

in order to measure execution time, memory usage and power consumption.

4.1 Platform Overview

The platform in which the selected feature extraction techniques will be implemented is a

MSP432P401R LaunchPad from Texas Instruments. This development kit incorporates

a MSP432P401R microcontroller oriented to develop high performance applications that

benefit from low-power operation. The main features of this microcontroller are:

• Processor: 48 MHz 32-bit ARM Cortex M4F with FPU and DSP acceleration.

• Power consumption: 80 uA/MHz active and 660 nA RTC standby operation.

• Analog: 24 Ch 14-bit differential 1MSPS SAR ADC, 2 comparators.

• Digital: Advanced encryption standard accelerator, CRC, DMA, HW MPY32.

• Memory: 256 KB Flash, 64 KB RAM.

• Timers: 4 x 16-bit, 2 x 32-bit.

• Communication: up to 4 I2C, 8 SPI, 4 UART.

31

32 4.2 Measurement Procedure

The LaunchPad also includes an on-board emulator which means the user can program

and debug the projects without the need for additional tools. Free software development

tools are available to work with this platform such as the Code Composer StudioTM (CCS)

IDE, IAR Embedded WorkbenchTM IDE and Keil R© µVision R© IDE.

The use of this platform together with the mentioned development tools provides the

developer many optimization tools and possibilities to improve any application in terms

of code size, speed and mostly low-power consumption. More information about the

platform can be found in [14].

4.2 Measurement Procedure

Here, a procedure to measure execution time, memory usage and power consumption is

presented. This procedure is not exclusive for the feature extraction techniques and can

be used in any application that runs in the MSP432P401R LaunchPad. Each procedure

was developed using CCS.

4.2.1 Execution Time

Execution time is, as it name implies, the time it takes to run a piece of code. Measuring

execution time with CCS is fairly simple. The measurement can be performed using the

debugger by setting breakpoints between the piece of code that wants to be measured and

one count event breakpoint, then running the code and finally looking at a counter with

the clock cycles that it took the code to run. Then, it is possible to get the execution

time if the operating frequency of the system is known by using:

execution time =
clock cycles

clock frequency
(4.1)

Figure 4.1 depicts an example of the Breakpoints tab showing the clock cycles that it

took to run a piece of code and also the two breakpoints that delimit the measured code.

The clock cycles for the same piece of code do not vary and therefore the execution time

is strictly tied to the operating frequency as shown in Equation 4.1.

Figure 4.1: CCS Breakpoints tab

4 Hardware Platform and Measurement Procedure 33

The procedure to measure execution time for a piece of code is:

1. In CCS enter the Debug Mode.

2. Open the Breakpoints tap and create a new count event breakpoint configured to

count clock cycles.

3. In the breakpoint properties set reset count on run as true.

4. Place two breakpoint between the piece of code to be measured.

5. Run the program until reaching the last breakpoint.

6. Get the clock cycles from the count event breakpoint.

7. Calculate the execution time.

4.2.2 Memory Usage

As mentioned before, the MP432P401R microcontroller has 256 KB of Flash and 64 KB

of RAM, both types of memory have different purposes. Flash memory is non-volatile and

it normally stores data that does not change, it is the program memory. RAM memory is

volatile and stores data needed at runtime, this memory is very fast but its size is often

limited. Two important components of the RAM are the stack and the heap. The stack is

the region in RAM in which variables created inside the functions called by the program

are stored and the heap is the region of RAM managed by the programmer.

CCS counts with a Memory Allocation tool that makes measuring Flash memory usage

fairly simple and is also able to measure RAM memory usage partially. The tool is only

able to perform a static analysis on the code and therefore is able to measure static but

not dynamically allocated memory.

Figure 4.2 depicts an example of the Memory Allocation tab. The MAIN measurement

shows the Flash memory usage, the percentage used over the whole memory available

and also specifies how it is distributed. The SRAM DATA measurement shows the RAM

memory usage. It also shows the percentage used over the whole memory available and

specifies how it is distributed. The static data is comprised in the .data and .bss sections

while the stack is in the .stack section and the heap in the .sysmem section. The minimum

default values are 512 bytes for the stack and 1024 bytes for the heap. The programmer

can specify the space assigned for the stack and heap in the build settings. Depending

on the application those values should increase if the code requires more space for any of

those memory regions. Sometimes during debugging or in a real application a code can

crash or not work as intended because it can run out of memory or even because the heap

and the stack can crash during runtime.

34 4.2 Measurement Procedure

Figure 4.2: CCS Memory Allocation tab

If the total RAM memory usage wants to be calculated the programmer needs to include

the dynamic allocated peak memory that could be reached by the code and therefore

must specify in the build settings the space provided for the heap and the stack. The

programmer is the responsible of taking and releasing memory commonly using functions

like malloc and free. To estimate the dynamic peak memory, the programmer should

have a clear idea about what the code does and needs to find the scenario in which the

biggest amount of memory is requested. This should not be an issue since every time

memory is requested the size of the memory block needs to be specified, so this amount

of memory can be approximated by looking at memory allocations inside the code and

their respective size.

The procedure to measure memory usage is:

1. In CCS open the Memory Allocation tab.

2. Get Flash memory usage from the MAIN measurement.

3. Get RAM memory usage from the SRAM DATA measurement.

4. Add the amount of dynamically allocated peak memory to the RAM measurement

if necessary.

4.2.3 Power Consumption

Given that battery life is often an issue in IoT applications, power consumption is a

critical parameter to take into account during the design process. There are many factors

that can influence power consumption like operating voltage, clock frequency, sleep times,

transition times or even intermodule dependencies. It is important then to find a method

to accurately measure power to evaluate different scenarios aiming to achieve the lowest

power consumption.

4 Hardware Platform and Measurement Procedure 35

EnergyTraceTM is an energy based code analysis tool included in CCS that measures

and displays the application’s energy profile and helps to optimize it for ultra-low-power

consumption [13]. For MSP432 devices Energy Trace supports two modes of operation:

ET (energy profiling only) and ET+ (energy profiling + program counter trace). ET

enables analog energy measurements to determine the consumption of an application.

ET+ in addition supports a tool useful for measuring and viewing the application’s energy

profile and correlating it with the state of the CPU.

Figures 4.3, 4.4 and 4.5 show the different views available for the Energy Trace working

in ET mode. For every measurement the user can specify the length of the measurement

and is also able to save data for future comparison. The Profile tab provides information

about the consumed energy, power, voltage, current and also gives an estimate of the

battery life for the current application using a specific type of battery that can also be

configured. Power and energy tabs show a plot of how power and energy behave over

time for the current application. Sometimes, if the code runs only once and very fast,

Energy Trace may not able to measure power. Then, it is useful to include the code that

wants to be measured inside a loop just for measuring purposes. By doing that the mean

energy consumption for one iteration can be found using:

mean energy = mean power × execution time (4.2)

Figure 4.3: Profile tab in ET mode

36 4.2 Measurement Procedure

Figure 4.4: Power tab in ET mode

Figure 4.5: Energy tab in ET mode

On the other hand, ET+ mode is able to provide information about the time that the

application spends in active or in one of the low-power modes of the device, it is also able

to give information about which routine or routines consume more or less power. Figure

4.6 shows how the Profile tab looks in the ET+ with an example that breaks down power

for every function inside the code. Figure 4.7 shows the states tab that is not present in

ET mode, this tab shows the distribution of power modes over time.

4 Hardware Platform and Measurement Procedure 37

Figure 4.6: Profile tab in ET+ mode

Figure 4.7: States tab in ET+ mode

38 4.2 Measurement Procedure

For measurement purposes, only ET mode will be used in order to measure power and

energy for each technique. Also, each technique was included inside a loop and therefore

to measure energy Equation 4.2 was used. ET+ mode can be useful in the final stages

of the IoT EEG device when not only feature extraction is ready but the preprocessing

and classification stage are too. It could give the chance then to incorporate low-power

modes between the acquisition of the signal and the whole processing and can also provide

information about the power consumption of each individual stage.

The procedure to measure power consumption is:

1. In CCS a open debug session and open Energy Trace.

2. Configure the time for the measurement.

3. Run the application and Energy Trace simultaneously.

4. Get the power measurement from the Profile tab.

Chapter 5

Implementation of Feature Extraction

Techniques

This chapter explains the approach taken for the microcontroller implementation of each

feature extraction technique. It introduces the CMSIS-DSP library and describes some

of the functions that were borrowed from this library into the implementation. It also

brings a detailed explanation of the procedure followed by each algorithm and it presents

validations for each technique against the simulated references developed in MATLAB.

5.1 CMSIS DSP Software Library

Before describing the implementation of each feature extraction technique, it is necessary

to briefly introduce the CMSIS-DSP Software Library [3]. CMSIS stands for Cortex

Microcontroller Software Interface Standard and it is a vendor-independent hardware

abstraction layer for the Cortex-M processor series. The CMSIS enables consistent device

support and simple software interfaces to the processor and the peripherals. Hence,

it is intended to simplify software re-use, reduce the learning curve for microcontroller

developers and also the time to market for new devices.

One component of the CMSIS is the CMSIS-DSP. DSP is a library collection with over 60

functions for various data types like fix-point (fractional q7, q15, q31) and single precision

floating-point (32-bit). The library is available for all Cortex-M cores. The Cortex-M4

and Cortex-M7 implementations are optimized for the SIMD instruction set. The library

covers functions for the following operations:

• Basic math functions.

• Fast math functions.

• Complex math functions.

39

40 5.1 CMSIS DSP Software Library

• Filters.

• Matrix functions.

• Transforms.

• Motor control functions.

• Statistical functions.

• Support functions.

• Interpolation functions.

Some functions from filters, complex math functions and transforms were exploited during

the implementation of the feature extraction techniques. A short description each of them

is given next:

• arm fir init f32: this function is used to initialize a floating-point FIR filter. Here

a floating-point FIR filter structure is referenced, also information about the filter

coefficients and the size of the block that is processed per call is provided.

• arm fir f32: this function performs a floating-point FIR filtering. It must be called

after the initialization. A FIR instance is provided, a pointer to the input and

output vector, and the block size.

• arm rfft fast init f32: this function initializes the floating-point real FFT. Here a

real FFT instance structure is referenced as well as the length of the FFT. It verifies

that the length of the FFT is a supported value. Supported FFT lengths are 32,

64, 128, 256, 512, 1024, 2048 and 4096.

• arm rfft fast f32: this function performs a floating-point real FFT. It must be called

after the initialization. A FFT instance is provided, also a pointer to the input and

output array, and a flag to indicate if a direct or an inverse transform is performed.

• arm cmplx mag f32: this function can compute the magnitude of a floating-point

complex vector. A pointer to the input and output vectors must be provided as well

as the number of complex samples in the input.

• arm conv f32: this function computes convolution of floating-point sequences. A

pointer to two input sequences, the length of each of them and a pointer to the

output vector must be provided. The length of the output will be equal to the sum

of the lengths of the two input sequences plus 1.

5 Implementation of Feature Extraction Techniques 41

5.2 Microcontroller Implementation

FIR, Welch’s method and DWT were implemented in the MSP432P401R LaunchPad.

For each technique, a general description, implementation details and a performance

validation is given. To validate that each technique works as intended, the test signal

in Figure 3.1 was also provided to each code as input. The output array was extracted

from the microcontroller and then imported to MATLAB in order to be compared to the

reference obtained during simulations.

5.2.1 FIR Feature Extraction

The FIR feature extraction implemented code is able to take an EEG input signal to

compute power in any of the frequency bands. A single function was developed in which

the user must provide an array with the EEG reading, an array containing the filter

coefficients for the desired band and finally an output array to store power. The filter

coefficients for each band are fixed for a specific sampling frequency and can be easily

obtained using MATLAB. Figure 5.1 shows the approach taken to extract features from

an EEG reading using FIR.

FIR filtering

Power computation

Moving average filtering

Figure 5.1: FIR feature extraction algorithm sequence

The first step involves filtering the EEG signal. Here, two functions from the CMSIS-DSP

are used together. The arm fir init f32 is used to initialize the filter with the provided

band coefficients and later the arm fir f32 function computes the filtered signal.

After the signal filtering stage comes power computation. Since power is normalized to a

1 Ω resistor, it can be computed just by squaring the filtered time signal. It is achieved

by using a loop to multiply each element stored in the filtered signal array by itself.

Finally, a moving average filter is applied to the power measurement in order to get a less

noisy reading. This filter takes each element in the power array and replaces it with a

value obtained by averaging a certain number of consecutive samples.

42 5.2 Microcontroller Implementation

Figure 5.2 shows a comparison of the reference simulated signal from the one obtained

in the microcontroller. Since both plots look very similar a plot of the percentage error

is provided in Figure 5.3 and also Table 5.1 shows the minimum, average and maximum

error in the measurement for the Alpha band and the rest. This measurements show that

the algorithm performs well and is able to extract power from each of the bands in a

proper and accurate way.

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800
Reference Alpha Band Power (8 Hz − 13 Hz)

Sample

P
ow

er
 (

pW
)

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800
Microcontroller Alpha Band Power (8 Hz − 13 Hz)

Sample

P
ow

er
 (

pW
)

Figure 5.2: Simulated and microcontroller implementation comparison for FIR

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3 Alpha Band Power Percentage Error

Sample

M
ag

ni
tu

de

Figure 5.3: Validation error for FIR

5 Implementation of Feature Extraction Techniques 43

Table 5.1: Validation percentage error for FIR

Band Minimum Average Maximum

Delta 0.000057911 0.00046846 0.0012616

Theta 0.0000061622 0.001232 0.0060379

Alpha 0.00000046394 0.00051055 0.0031324

Beta 0.000010121 0.028568 1.6774

5.2.2 Welch’s Method Feature Extraction

The implemented Welch’s method algorithm takes an EEG input signal and computes

PSD. For this technique a single function was created too, the user must provide an

input array containing the EEG reading and an output array that will hold power. For

this algorithm the sampling frequency must be declared since it is used for computing

the periodogram. The window length, the FFT length and the number of windows are

set by the code based on the input size but they can also be tuned for other specific

implementations. The code is restricted to work with inputs and windows containing a

power of 2 number of elements because of a restriction of the FFT functions from the

CMSIS-DSP library. The implemented code creates 7 windows with sizes that are equal

to the input size divided by 4, therefore the output will have a size equal to the input size

divided by 8 as a result of the periodogram calculation. Figure 5.4 shows the approach

taken to extract features from an EEG reading using Welch’s method.

Signal windowing

FFT computation

Periodograms computation

Periodograms averaging

Figure 5.4: Welch’s method feature extraction algorithm sequence

44 5.2 Microcontroller Implementation

The first thing to do when using Welch’s method is to apply a window function to the

input signal. In this case, a rectangular window function was chosen in order to reduce

complexity. A rectangular function window is equal to 1 inside an interval and equal

to 0 elsewhere as shown in Figure 5.5, therefore it only implies dividing the signal into

intervals. A 50% overlap was selected for the time windows, this makes easier to window

the signal and also ensures that every windows will contain a power of 2 number of

elements if the input signal does too. This part of the algorithm fills arrays with signal

windows to compute FFT later.

1

Time (s)

Magnitude

Figure 5.5: Rectangular window

For the FFT computation stage the algorithm takes the windows in which the signal

was divided and computes a FFT in each of them. In order to do that, three functions

from the CMSIS-DSP library were used. The arm rfft fast init f32 function is used to

ensure that the length of the transforms that will be calculated are supported values, if

the value is correct the code can execute but if not it will get in an infinite loop. Then,

the arm rfft fast f32 function performs a real floating-point FFT creating an array with

complex values representing each window in the frequency domain. Finally, since the FFT

returns a frequency domain representation array with complex values, the magnitude is

calculated using the function arm cmplx mag f32.

Having calculated the FFT of each window section it is possible then to compute the

periodogram for each block. This is achieved by using Equation 2.4 where the FFT is

already computed, the space between samples is the inverse of the sampling frequency

and the number in samples is equal to the length of the window.

The final step in Welch’s method is to average all the periodograms. In order to do

that, the algorithm adds the same element for each window and divides the result by the

number of windows. The output will then be a representation of the PSD in the EEG

signal in which all the different bands can be extracted and analyzed.

A comparison between the simulated signal and the microcontroller implementation is

depicted in Figure 5.6. Both plots look to provide the same output and in this case a plot

of the percentage error is provided in Figure 5.7 too. Table 5.2 provides information about

the the minimum, average and maximum error in the measurements. The error looks to

grow as frequency does, however the maximum value is extremely low. By looking at

the results it is possible to confirm that the microcontroller implementation performs as

intended and is able to estimate PSD accurately.

5 Implementation of Feature Extraction Techniques 45

0 10 20 30 40 50 60
−140

−120

−100

−80
Reference Power Spectral Density

Sample

M
ag

ni
tu

de
 (

dB
/H

z)

0 10 20 30 40 50 60
−140

−120

−100

−80
Microcontroller Power Spectral Density

Sample

M
ag

ni
tu

de
 (

dB
/H

z)

Figure 5.6: Simulated and microcontroller implementation comparison for Welch’s method

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4 Power Spectral Density Percentage Error

Sample

M
ag

ni
tu

de

Figure 5.7: Validation error for Welch’s method

Table 5.2: Validation percentage error for Welch’s method

Minimum Average Maximum

0.0000006253 0.00002702 0.00033331

46 5.2 Microcontroller Implementation

5.2.3 DWT Feature Extraction

The algorithm developed to extract features using DWT is able to decompose an EEG

signal through a set of high-pass and low-pass filters in order to extract the frequency

bands to compute their power. It also provides a bookkeeping vector that indicates the

size of the decompositions in order to make easier to extract the bands later. The use of

the technique was reduced to a simple function in which the user must provide the input

array containing the EEG signal, an output array to store the decomposition and another

one to store the bookkeeping vector. The level of decomposition must be declared by the

user depending on the specific application. The algorithm uses a db4 mother wavelet by

default, the coefficients of both the high-pass and the low-pass filter were obtained using

MATLAB. The user can also declare another mother wavelet by changing the arrays

holding the coefficients if necessary. Figure 5.8 shows the approach taken to extract

features from an EEG reading using DWT.

Bookkeping vector
computation

DWT computation

Rearragement of
coefficients

Power computation

Figure 5.8: DWT method feature extraction algorithm sequence

Before calculating the DWT it is possible to get the bookkeeping vector if the input

size and the decomposition level are known. The size of each decomposition level can

be obtained taking into account the convolution and the down-sampling for the previous

level as shown in Figure 2.6. Therefore the size for each level can be calculated using

Equation 5.1. The numerator represents the convolution process and the denominator

the effect of down-sampling.

5 Implementation of Feature Extraction Techniques 47

level size =
previous level size + filter length - 1

2
(5.1)

After the length of each decomposition level is computed, a small rearrangement is carried

out in order to get the bookkeeping vector that contains information of the approximation

and detail coefficients for the last level. The detail coefficients for the rest and finally the

input size as shown in Figure 5.9.

Length
of A

Length
of D

Length
 of D

Length
of D

...
Input

 length

A = n level approximation coefficients

D = n level detail coefficients

Bookeeping vector

n n n-1 n-2

n
th

n
th

Figure 5.9: Bookkeeping vector structure for DWT

The DWT computation stage is the most relevant in which the frequency bands are

extracted. There is no function in CMSIS-DSP library to perform a DWT decomposition

as there is for FIR filtering or FFT computation so most of the implementation was

developed from scratch. However, the arm conv f32 function from the library was used

to make the convolution between the signals in the levels and the filter coefficients. The

piece of code that is oriented to compute DWT is embedded inside a loop that runs as

many times as level are in the decomposition. It takes the EEG reading as input for the

first iteration and then the approximation coefficients of each level for the rest. The first

step is to take the input array and pass it thought the filters, it is achieved using the

function arm conv f32 between the input and the filters. The result of the convolution

is down-sampled to get rid of the extra information since half of the frequencies are cut

because of the filter, in order to do that two new arrays store only the odd index values

from the approximation and detail coefficients. Both coefficients arrays are stored in one

bigger array that stores the whole decomposition because the approximation coefficients

need to be used in the next iteration and the details coefficients will be present in the

output array. Then the process is repeated until reaching the last level.

After computing DWT and getting an array holding both the approximation and details

coefficients for each level, it is necessary to rearrange and get rid of some values to get

the final representation. Based on the decomposition array the output is built containing

the approximation and detail coefficients for the last level and the detail coefficients for

the rest. The rearrangement is depicted in Figure 5.10.

48 5.2 Microcontroller Implementation

A D D D ... D

A D A D ... A D A D

Decomposition vector

Output

n n n-1 n-1 n-2 n-2 1 1

n n n-1 n-2 1

A = n level approximation coefficients

D = n level detail coefficients
n

th

n
th

Figure 5.10: Rearrangement of coefficients process for DWT

Finally, the last step is power computation. The output vector will hold a set of coefficients

representing information about the signal in different bands and power can be extracted

from them. In this case power is computed taking the square of the signal representing

each band, therefore power is also normalized for this technique.

The simulated reference signal and the microcontroller implementation are compared in

Figure 5.11, also the obtained bookkeeping vector is shown in Figure 5.12. Since it is

hard to notice differences between the reference and the implementation, a plot of the

percentage error is provided in Figure 5.13 and Table 5.3 provides information about

the minimum, average and maximum error in the measurements. The error is bigger in

samples that show less power but even though this technique shows bigger errors than the

others, those errors are still very low. Therefore, from the experimental measurements, it

is evident that the developed algorithm is able to decompose an EEG signal using DWT

achieving the same results with the MATLAB analysis.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15
x 10

4 Reference DWT Decomposition

Samples

P
ow

er
 (

pW
)

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15
x 10

4 Microcontroller DWT Decomposition

Samples

P
ow

er
 (

pW
)

Figure 5.11: Simulated and microcontroller implementation comparison for DWT

5 Implementation of Feature Extraction Techniques 49

1 2 3 4 5 6
0

100

200

300

400

500

600
Bookkeeping Vector

Element

M
ag

ni
tu

de

Figure 5.12: Implemented bookkeeping vector for DWT

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Power Percentage Error

Sample

M
ag

ni
tu

de

Figure 5.13: Validation error for DWT

Table 5.3: Validation percentage error for DWT

Minimum Average Maximum

0.00001162 0.017211 1.1367

50 5.3 Optimizations

5.3 Optimizations

Each technique was not only implemented but also optimized as much as possible in

order to improve execution time, memory usage and power consumption before running

the evaluations. The selected optimizations and also results that demonstrate their impact

are shown for each technique. Every measurement was carried out using the procedures

described in Chapter 4.

5.3.1 Execution Time and Memory Usage

CCS incorporates optimization tools and options to improve speed, code size and power

consumption. Settings in the compiler can be adjusted to achieve different optimization

levels for speed and code size. Figure 5.14 shows the optimization view in CCS. There

are different optimization levels that can be selected from 0 to 4, these optimizations can

include register, local, global, interprocedure and whole program optimizations. There are

two floating point modes, strict is the one set by default and relaxed is another mode that

results in smaller and faster code by sacrificing some accuracy. Finally, there is another

option to select the trade-off between speed and code size from 0 to 5, being 0 oriented

to size and 5 to speed.

Figure 5.14: Compiler optimization view

Since experimenting with different complier options can be sometimes hard, CCS also

incorporates an Optimizer Assistant that is able to perform an exhaustive analysis in the

code to decide which are the best suited optimization settings. Figures 5.15 and 5.16

show the Optimizer Assistant performing and analysis for optimization level and for the

speed and code size trade-off.

5 Implementation of Feature Extraction Techniques 51

Figure 5.15: Code size for different optimization level settings

Figure 5.16: Code size for different code size and speed trade-off settings

The Optimizer Assistant was used to determine which was the best combination of settings

for each technique. Table 5.4 contains the optimization settings used for each technique

using the Optimizer Assistant.

Table 5.4: Compiler optimization settings

Technique
Optimization

level

Floating point

mode

Speed vs size

trade-off

FIR 4 Relaxed 2

Welch’s method 4 Relaxed 2

DWT 3 Relaxed 2

Having defined the settings for optimizations, it is possible to test how much they improve

each metric. Table 5.5 shows how execution time is improved by the tool. Since at this

point no operating frequency is defined, the results are shown in clock cycles. Looking at

the table it is evident that there is a considerable improvement in speed, in this case up

to 36% of improvement was achieved just by changing the compiler settings. Table 5.6

shows how memory usage is improved. In this case, the tool can only improve the size

of the code so it will affect only the Flash memory. Looking at the table it is evident an

improvement for each technique even though is not as big as the one obtained for speed.

52 5.3 Optimizations

Table 5.5: Speed (clock cycles) optimization

Technique
Before

optimization

After

optimization
Improvement

FIR 2414827 1526264 36.80%

Welch’s method 310863 232221 25.30%

DWT 352497 247968 29.65%

Table 5.6: Code size (bytes) optimization

Technique
Before

optimization

After

optimization
Improvement

FIR 5520 5362 2.86%

Welch’s method 87432 87210 0.25%

DWT 6290 5882 6.48%

5.3.2 Power Consumption

Power consumption was also optimized for each feature extraction technique. Operating

voltage and frequency are critical parameters in power consumption. In this case, both

parameters were tuned in order to find the most suitable parameters combination.

Given that power is the product of voltage and current, if there is an application that

consumes a certain amount of current, a lower supply voltage can help reduce the power

consumption. The MSP432P01R requires a secondary core voltage (VCORE) for its

internal digital operation in addition to the primary one applied to the device (VCC).

The VCORE output is programmable with two predefined voltage levels. VCORE0 is

approximately 1.2 V and is recommended for applications running in frequencies bellow

24 MHz while VCORE1 is close to 1.4 V and is recommended if the operating frequency

is between 24 MHz and 48 MHz.

VCORE can be generated using two dedicated voltage regulators, there is a low-dropout

voltage regulator (LDO) set by default and also an inductor-based DC-to-DC step-down

switching regulator (DC-DC). The LDO has some advantages over the DC-DC as it is

cost-effective, relatively noise free, faster to ramp up and down from low-power modes,

among others. However, the LDO regulator might not be ideal for power savings, the

DC-DC has a significant power improvement saving up to 45% compared to the LDO

regulator.

5 Implementation of Feature Extraction Techniques 53

As it was also mentioned, the selection of the operating frequency of the system is an

important element in low-power consumption applications. A reduction in the operating

frequency will cause a reduction in current consumption. However, reducing the frequency

could reduce overall system throughput or may increase energy consumption. Energy is

the product between power and time, therefore there is a possibility that the same code can

consume more power but less energy at higher frequencies because the power is consumed

during a shorter period of time.

Since the selection of the VCORE is strictly tied to the operating frequency, for each of

the feature extraction technique different frequencies and hence operating voltages were

evaluated to get the power and energy consumption. Because the application requires to

reduce energy consumption as much as possible, the DC-DC regulator was selected over

the LDO.

Tables 5.7 and Figure 5.17 show the results of the measurements for power in five different

frequencies, starting in the 3 MHz default frequency up to the maximum of 48 MHz. Just

as expected it can be seen that power consumption rises when frequency does.

Table 5.7: Power (mW) measurements for optimization

Technique
Frequency (MHz)

3 12 24 36 48

FIR 10.49 11.62 13.58 17.43 20.07

Welch’s method 10.20 11.60 13.60 17.53 19.96

DWT 9.43 11.06 13.40 17.29 20.12

0 5 10 15 20 25 30 35 40 45 50
8

10

12

14

16

18

20

22
Power Consumption for Different Frequencies

Frequency (MHz)

P
ow

er
 (

m
W

)

FIR
Welch’s method
DWT

Figure 5.17: Power measurements for optimization

54 5.3 Optimizations

Based only on the power readings the ideal frequency to choose use would be the lowest,

however as mentioned before, a low frequency produces a slower execution and therefore

it consumes power for more time. It is necessary then to measure not only power but also

the time for how long power is consumed to estimate energy. Looking at the energy plot

in Figure 5.18 energy consumption goes down as frequency increases. It means that even

though more power is consumed at higher frequencies, it is consumed for a shorter time

period. Based on these experiments the selected operating frequency is 48 MHz and the

core voltage setting VCORE1.

Table 5.8: Energy (uJ) measurements for optimization

Technique
Frequency (MHz)

3 12 24 36 48

FIR 5336.84 1477.93 863.61 738.97 638.17

Welch’s method 789.55 224.48 131.59 113.08 96.57

DWT 779.85 228.54 138.45 119.09 103.94

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000
Energy Consumption for Different Frequencies

Frequency (MHz)

E
ne

rg
y

(u
J)

FIR
Welch’s method
DWT

Figure 5.18: Energy measurements for optimization

As it is explained in Chapter 2, feature extraction is just one stage in the operation of an

EEG. Therefore, at this point it is only possible to perform a partial power optimization

and not a whole application optimization because it is necessary to put all the stages

together and also consider interdependencies between modules. In the whole application

optimization of the EEG, power consumption can be considerably reduced by including

low-power modes, minimizing transitions between modes, optimizing memory accesses,

terminating and configuring I/Os or even enabling and disabling modules whether they

are needed or not. In [8] an application report about design of Ultra-Low-Power (ULP)

applications with MSP432TM microcontrollers can be consulted for further details.

Chapter 6

Evaluation of Feature Extraction

Techniques

After exploring, simulating and implementing different feature extraction techniques, it

is possible to evaluate them and analyze how each would fit in an IoT implementation

of an EEG. Execution time, memory usage and power consumption are measured and

compared in order to find how the selected techniques perform not only in each specific

parameter but also taking them as a whole, keeping in mind that the EEG device should

face computation capability and energy capacity in the best way possible. In order to

evaluate the techniques in equal conditions, the test signal in Figure 3.1 was provided to

each code as input. Every measurement was taken following the procedures explained in

Chapter 4.

6.1 Execution Time

CPU cycles were measured and time was computed using Equation 4.1. The 48 MHz

operating frequency defined during the optimization was also set. Table 6.1 and Figure

6.1 show the results of the execution time measurements for each algorithm.

Table 6.1: Execution time evaluation

Technique CPU cycles Time (ms)

FIR 1526264 31,80

Welch’s method 232221 4,84

DWT 247968 5,17

55

56 6.2 Memory Usage

FIR Welch’s Method DWT
0

5

10

15

20

25

30

35
Execution Time of Feature Extraction Techniques

Technique

T
im

e
(m

s)

Figure 6.1: Execution time evaluation

The execution time is desired to be as low as possible, a fast algorithm would let the

application spend less time in active mode and therefore spend more time in passive

mode saving energy. When comparing each technique, FIR takes considerably more time

to be executed than Welch’s method or DWT that last about the same. FIR execution

time is approximately 6 times slower than its counterparts, this difference is mostly due

to the dynamics of the algorithm. FIR is not able to provide information about all the

frequency bands simultaneously, on the contrary it must extract information about each

band one at the time. The process of filtering, power computation and averaging is carried

out once for every band. Even if information about only one band wants to be computed,

it is faster to use any of the other two approaches. When comparing Welch’s method and

DWT, no big difference is found since Welch’s method is only 0.33 ms faster than DWT.

From the execution time point of view either Welch’s method or DWT are better suited

for the IoT EEG implementation.

6.2 Memory Usage

Flash and SRAM memory measurements along with the usage over the available memory

in the platform are shown in Table 6.2. For the SRAM the measurement is decomposed

in static and dynamic memory usage. Figures 6.2 and 6.3 depict a comparison for the

Flash and SRAM respectively.

6 Evaluation of Feature Extraction Techniques 57

Table 6.2: Memory usage (bytes) evaluation

Technique
Flash (bytes) SRAM (bytes)

Total Usage Static Dynamic Total Usage

FIR 7154 2.73% 11240 1536 12776 19.49%

Welch’s method 88786 33.88% 2332 1536 3868 5.90%

DWT 3582 1.37% 4228 11062 15290 23.33%

FIR Welch’s Method DWT
0

1

2

3

4

5

6

7

8

9
x 10

4 Flash Memory Usage of Feature Extraction Techniques

Technique

F
la

sh
 M

em
or

y
(b

yt
es

)

Figure 6.2: Flash memory usage evaluation

FIR Welch’s Method DWT
0

2000

4000

6000

8000

10000

12000

14000

16000
SRAM Memory Usage of Feature Extraction Techniques

Technique

S
R

A
M

 M
em

or
y

(b
yt

es
)

Figure 6.3: SRAM memory usage evaluation

58 6.3 Power Consumption

Looking at the Flash memory measurements, there is a big difference between Welch’s

method and the rests of techniques. In this case, memory usage for Welch’s method is

around one third of the whole memory available in the platform. The size of the code

for Welch’s method is bigger because of the use of the FFT functions taken from the

DSP library. In order to perform the FFT, this library needs to include a big amount

of lookup tables that take 78936 bytes of memory. For the other two techniques Flash

memory consumption is low if compared to Welch’s method and is not bigger than 3%.

For the SRAM memory consumption Welch’s method is no longer the most consuming

technique but the lowest. For this technique SRAM memory usage is only around 5% of

the available memory in the platform. Most memory is spent holding the input and output

arrays. FIR and DWT posses similar total consumption but differently distributed. In

the case of FIR most memory in SRAM is static allocated because the algorithm needs

to hold the input array, four arrays for the filter coefficients and also four arrays to

store the power in frequency bands. DWT consumes most memory dynamically, static

memory is dedicated to store input, output and filter coefficients arrays while dynamic

memory is exploited in this algorithm to create temporal arrays to store the results of the

decomposition and sub-sampling for the approximation and details coefficients in each

level before storing them to the decomposition array.

Looking at the results, if terms of Flash memory DWT and FIR are better suited for the

application. Regarding SRAM memory consumption, Welch’s method performs better

than the others.

6.3 Power Consumption

To evaluate power consumption both power and energy were measured for each of the

techniques, the results can be observed in Table 6.3. Figures 6.4 and 6.5 show a graphical

representation of power and energy respectively for each feature extraction technique.

Table 6.3: Power consumption evaluation

Technique Power (mW) Energy (uJ)

FIR 20.07 638.17

Welch’s method 19.96 96.57

DWT 20.12 103.94

6 Evaluation of Feature Extraction Techniques 59

FIR Welch’s Method DWT
0

5

10

15

20

25
Power Consumption of Feature Extraction Techniques

Technique

P
ow

er
 (

m
W

)

Figure 6.4: Power consumption evaluation

FIR Welch’s Method DWT
0

100

200

300

400

500

600

700
Energy Consumption of Feature Extraction Techniques

Technique

E
ne

rg
y

(u
J)

Figure 6.5: Energy consumption evaluation

Power consumption was very similar for each of the techniques and close to 20 mW. This

similarity between measurements was expected and can be explained since each technique

is running at the same frequency, operating voltage, using the same voltage regulator and

making use of the same computation resources. Because the power measurements do not

provide relevant information about the impact in energy capacity, the time for how long

that power is consumed must be taken into account as well. The energy measurements

show that since energy consumption is tied to execution time and power is almost the

same for each technique, execution time and energy measurements show similar results.

FIR consumes around 6 times more energy than the other algorithms because it is slower,

while Welch’s method and DWT perform in a similar way. Therefore, in terms of power

and energy both Welch’s method and DWT perform satisfactorily.

60 6.4 Overall Evaluation

6.4 Overall Evaluation

After evaluating each of the metrics in a separate way, it is important then to carry out a

general evaluation to put the results together. In terms of execution time, Welch’s method

and DWT performed similarly between them and considerably better than FIR. For the

memory usage, Flash and SRAM were individually analyzed. In terms of Flash memory,

DWT and FIR showed good performance while for the SRAM, it was Welch’s method

which performed better. Power consumption was almost the same for each technique and

therefore energy was measured to show similar results to execution time where Welch’s

method and DWT perform better than FIR.

When all the metrics are seen as a whole, a bigger picture of the performance of the

feature extraction techniques in an IoT implementation can be obtained. Table 6.4 gives

a better picture of the overall evaluation by showing if the technique performs good, bad

or even in the same way when compared to the rest of the techniques.

Table 6.4: Overall evaluation of feature extraction techniques

Technique
Execution

time

Memory usage Power consumption

Flash SRAM Power Energy

FIR 7 3 7 = 7

Welch’s method 3 7 3 = 3

DWT 3 3 7 = 3

Chapter 7

Conclusions

This work evaluated FIR, Welch’s method and DWT as feature extraction techniques

for an IoT EEG in terms of execution time, memory usage and power consumption on

a microcontroller implementation. As a result of an extensive research, it was found

that there are many feature extraction techniques that use filters, FFT or even DWT

concepts during operation, and therefore several approaches were analyzed and compared.

Using the findings of the investigation and the results from software simulations, those

approaches were explored leading to the selection of FIR, Welch’s method and DWT as

the techniques to evaluate more closely. Those techniques were implemented, validated

and optimized before running the measurements that would contrast their behavior.

The evaluation results showed that even though FIR can be used as a feature extraction

technique, it may not be the best suited for an IoT implementation due to its poor

speed and energy performance. On the other hand, since Welch’s method and DWT

performed similarly in those fields, the use of one or another will depend on the available

resources and implementation. If Flash memory is critical, then DWT is preferred over

Welch’s method. If SRAM memory usage is critical, Welch’s method can suit better

the application. Specifically for the IoT EEG, the factor that will determine if Flash or

SRAM is critical in the application is the total memory consumption of the rest of the

EEG stages.

The study showed that if an application is focused on the content of one specific band,

it could be faster and more energy-efficient to use certain techniques to extract features

from all the bands at one time than using one technique like FIR that lets the user extract

features from just one band if desired. In terms of memory, the results showed how the

nature of each algorithm finds more suitable to take either memory from SRAM or Flash

during their operation. In terms of power, the measurements suggest that algorithms like

the evaluated techniques that use similar processing cores will consume almost the same

average power, so the energy consumption will be tied to execution time.

61

62

The importance of this findings rely not only in providing three different implementations

of processing cores that are commonly used to extract features from EEG but also in

setting a reference of how they behave in different aspects like execution time, memory

usage and power consumption. This knowledge is useful in the IoT EEG as well as in any

other EEG implementation because any of this cores can be incorporated into the design

knowing with certainty their impact in relevant areas. This makes easier the selection of

one technique that may fit better in the design based on the final application requirements

and available resources.

Future work should incorporate the rest of the EEG stages along with a full application

optimization. It would also be interesting to evaluate each technique in terms their actual

performance to determine mental states when combined with the other stages in the EEG.

In that way, the results of the evaluation presented in this document and a evaluation

of performance of the system can lead to a better criteria in order to chose the optimal

feature extraction technique for the specific application in which the IoT EEG device

will perform. Another suggestion for further work is to explore an alternative hardware

implementation (FPGA, ASIC) of the techniques and compare it to the results of the

microcontroller implementation presented in this document.

Bibliography

[1] A. S. Al-Fahoum and A. A. Al-Fraihat. Methods of EEG Signal Features Extraction

Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neuro-

science, 2014(730218):7, Feb 2014.

[2] N. K. Al-Qazzaz, S. Ali, S. A. Ahmad, M. S. Islam, and M. I. Ariff. Selection

of mother wavelets thresholding methods in denoising multi-channel EEG signals

during working memory task. In Biomedical Engineering and Sciences (IECBES),

2014 IEEE Conference on, pages 214–219, Dec 2014.

[3] ARM. Cortex Microcontroller Software Interface Standard [online]. 2015. URL

http://www.keil.com/pack/doc/CMSIS/General/html/index.html.

[4] L. Astolfi, F. Cincotti, D. Mattia, F. De Vico Fallani, S. Salinari, G. Vecchiato,

J. Toppi, C. Wilke, A. Doud, H. Yuan, B. He, and F. Babiloni. Imaging the social

brain: multi-subjects EEG recordings during the ”Chicken’s game”. In 2010 Annual

International Conference of the IEEE Engineering in Medicine and Biology, pages

1734–1737, Aug 2010.

[5] F. Babiloni, F. Cincotti, D. Mattia, M. Mattiocco, S. Bufalari, F. De Vico Fallani,

A. Tocci, L. Bianchi, M. G. Marciani, V. Meroni, and L. Astolfi. Neural Basis For

The Brain Responses To The Marketing Messages: an High Resolution EEG Study.

In Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28th Annual In-

ternational Conference of the IEEE, pages 3676–3679, Aug 2006.

[6] N. Brodu, F. Lotte, and A. Lécuyer. Comparative study of band-power extraction

techniques for Motor Imagery classification. In Computational Intelligence, Cognitive

Algorithms, Mind, and Brain (CCMB), 2011 IEEE Symposium on, pages 1–6, Apr

2011.

[7] C. Chesnutt. Feature Generation of EEG Data Using Wavelet Analysis. Master’s

thesis, Texas Tech University, 2012.

[8] D. Dang and A. Lele. Designing an Ultra-Low-Power (ULP) Application With

MSP432TM Microcontrollers, 2015. URL http://www.ti.com/lit/an/slaa668/

slaa668.pdf.

63

http://www.keil.com/pack/doc/CMSIS/General/html/index.html
http://www.ti.com/lit/an/slaa668/slaa668.pdf
http://www.ti.com/lit/an/slaa668/slaa668.pdf

64 Bibliography

[9] Julien Castet Eduardo Reck Miranda. Guide to Brain-Computer Music Interfacing.

Springer, 2014.

[10] O. Faust, R. U. Acharya, A. R. Allen, and C. M. Lin. Analysis of EEG signals during

epileptic and alcoholic states using AR modeling techniques. IRBM, 29, 2008.

[11] Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch.

Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng,

and H. Eugene Stanley. Physiobank, PhysioToolkit, and Physionet. Circulation,

101(23):e215–e220, 2000. URL http://circ.ahajournals.org/content/101/23/

e215.

[12] P. Herman, G. Prasad, T. M. McGinnity, and D. Coyle. Comparative Analysis

of Spectral Approaches to Feature Extraction for EEG-Based Motor Imagery Clas-

sification. IEEE Transactions on Neural Systems and Rehabilitation Engineering,

16(4):317–326, Aug 2008.

[13] Texas Instruments. MSP EnergyTrace Technology [online]. 2016. URL http://

www.ti.com/tool/energytrace.

[14] Texas Instruments. MSP432P401R LaunchPad [online]. 2016. URL http://www.

ti.com/tool/msp-exp432p401r.

[15] M. R. N. Kousarrizi, A. A. Ghanbari, M. Teshnehlab, M. A. Shorehdeli, and A. Ghar-

aviri. Feature Extraction and Classification of EEG Signals Using Wavelet Transform,

SVM and Artificial Neural Networks for Brain Computer Interfaces. In Bioinformat-

ics, Systems Biology and Intelligent Computing, 2009. IJCBS ’09. International Joint

Conference on, pages 352–355, Aug 2009.

[16] MathWorks. Matlab [online]. 1994. URL http://www.matlab.com.

[17] A. Medl. Time Frequency and Wavelets in Biomedical Signal Processing. IEEE

Engineering in Medicine and Biology Magazine, 17(6):15–97, Nov 1998.

[18] A. C. Merzagora, S. Bunce, M. Izzetoglu, and B. Onaral. Wavelet analysis for EEG

feature extraction in deception detection. In Engineering in Medicine and Biology

Society, 2006. EMBS ’06. 28th Annual International Conference of the IEEE, pages

2434–2437, Aug 2006.

[19] M. Murugappan, N. Ramachandran, and Y. Sazali. Classification of human emotion

from EEG using discrete wavelet transform. Biomedical Science and Engineering,

2010.

[20] J. Musson and J. Li. A Comparative Survey of PSD Estimation Methods for EEG

Signal Analysis. Technical report, Old Dominion University, 2011.

http://circ.ahajournals.org/content/101/23/e215
http://circ.ahajournals.org/content/101/23/e215
http://www.ti.com/tool/energytrace
http://www.ti.com/tool/energytrace
http://www.ti.com/tool/msp-exp432p401r
http://www.ti.com/tool/msp-exp432p401r
http://www.matlab.com

Bibliography 65

[21] I. Omerhodzic, S. Avdakovic, A. Nuhanovic, and K. Dizdarevic. Energy Distribution

of EEG Signals: EEG Signal Wavelet-Neural Network Classifier. World Academy of

Science, Engineering and Technology, 2010.

[22] A. Oppenheim, A. Willsky, and S. H. Nawab. Signals and Systems. Prentice Hall,

2nd edition, 1998.

[23] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Ober-

maier, and M. Pregenzer. Current trends in Graz brain-computer interface (BCI)

research. IEEE Transactions on Rehabilitation Engineering, 8(2):216–219, Jun 2000.

[24] Physionet. EEG Motor Movement / Imagery Dataset [online]. 2009. URL http:

//physionet.org/physiobank/database/eegmmidb/.

[25] A. Prochazka, J. Kukal, and O. Vysata. Wavelet transform use for feature extraction

and EEG signal segments classification. In Communications, Control and Signal

Processing, 2008. ISCCSP 2008. 3rd International Symposium on, pages 719–722,

March 2008.

[26] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand,

and A. Lécuyer. OpenViBE: An Open-Source Software Platform to Design, Test, and

Use Brain 8211; Computer Interfaces in Real and Virtual Environments. Presence,

19(1):35–53, Feb 2010.

[27] N. Robinson and A. P. Vinod. Bi-directional imagined hand movement classification

using low cost eeg-based bci. In Systems, Man, and Cybernetics (SMC), 2015 IEEE

International Conference on, pages 3134–3139, Oct 2015.

[28] S. Sahoo, S. Mohanty, and T. Sahoo. Association between psychology and tech-

nical education by EEG. In Advance Computing Conference (IACC), 2014 IEEE

International, pages 1315–1321, Feb 2014.

[29] G. Schalk. BCI2000 [online]. 2016. URL www.bci2000.org.

[30] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw.

BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Transac-

tions on Biomedical Engineering, 51(6):1034–1043, Jun 2004.

[31] B. Wang, C. M. Wong, F. Wan, P. U. Mak, P. I. Mak, and M. I. Vai. Comparison

of different classification methods for EEG-based brain computer interfaces: A case

study. In Information and Automation, 2009. ICIA ’09. International Conference

on, pages 1416–1421, Jun 2009.

[32] S. Winder. Analog and Digital Filter Design. Elsevier Science, 2nd edition, 2002.

[33] J. Wu, J. Zhang, and L. Yao. An automated detection and correction method of

EOG artifacts in EEG-based BCI. In Complex Medical Engineering, 2009. CME.

ICME International Conference on, pages 1–5, Apr 2009.

http://physionet.org/physiobank/database/eegmmidb/
http://physionet.org/physiobank/database/eegmmidb/
www.bci2000.org

66 Bibliography

[34] G. z. Yan, B. h. Yang, and S. Chen. Automated and Adaptive Feature Extrac-

tion for Brain-Computer Interfaces by using Wavelet Packet. In 2006 International

Conference on Machine Learning and Cybernetics, pages 4248–4251, Aug 2006.

[35] A. Zabidi, W. Mansor, Y. K. Lee, and C. W. N. F. Che Wan Fadzal. Short-time

Fourier Transform analysis of EEG signal generated during imagined writing. In

System Engineering and Technology (ICSET), 2012 International Conference on,

pages 1–4, Sept 2012.

Appendix A

Acronyms and Abbreviations

ASIC Application-Specific Integrated Circuit

BCI Brain-Computer Interface

CPU Central Processing Unit

CMSIS Cortex Microcontroller Software Interface Standard

CCS Code Composer Studio

DFT Discrete Fourier Transform

DSP Digital Signal Processing

db4 Daubechies 4 wavelet

DC-DC Dc-to-DC step-down switching regulator

DWT Discrete Wavelet Transform

ECG Electrocardiography

EEG Electroencephalography, Electroencephalogram

EGG Electrogastrography

EMG Electromyography

EOG Electrooculography

ET EnergyTrace

ET+ EnergyTrace+

FIR Finite Impulse Response

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

IDE Integrated Development Environment

67

68

IIR Infinite Impulse Response

IoT Internet of Things

LDO Low-dropuot voltage regulator

MEG Magnetoencelography

RAM Random Access Memory

SRAM Static Random Access Memory

SIMD Single Instruction Multiple Data

PSD Power Spectral Density

ULP Ultra-low Power

VCC Main core voltage

VCORE Secondary core voltage

VCORE0 Low secondary core voltage

VCORE1 High secondary core voltage

WPT Wavelet Packet Transform

Appendix B

Feature Extraction Codes

This appendix contains the codes that were implemented for each of the studied feature

extraction techniques in the MSP432P401R LaunchPad. All of them are written in C and

every computation stage is specified by comments to ease the understanding of the codes.

B.1 FIR

/*

* Filter EEG Feature Extraction

* -----------------------------

* This code takes an EEG input signal and computes

* power for the Delta , Theta , Alpha and Beta

* frequency bands.

*

* Author: David Barahona Pereira

*

* Email address: davidbp .13 @gmail.com

*

* Institution: Costa Rica Institute of Technology

* Karlsruhe Institute of Technology

*

* Last revision: 16/09/2016

*/

#include <stdio.h>

#include "msp.h"

#include "arm_math.h"

#include "math_helper.h"

#include "driverlib.h"

// Elements in input array

#define TEST_LENGTH_SAMPLES 512

// Number of taps in FIR filter

#define NUM_TAPS 61

69

70 B.1 FIR

// Samples used for each computation for averaging

#define MOVING_AVERAGE_SAMPLES (TEST_LENGTH_SAMPLES / 32)

// Samples used for each FIR calculation

#define BLOCK_SIZE (TEST_LENGTH_SAMPLES / 8)

// EEG reading

extern float32_t EEG_Input[TEST_LENGTH_SAMPLES];

// Filter coefficients for Delta band

extern float32_t Delta_Coeffs[NUM_TAPS];

// Filter coefficients for Theta band

extern float32_t Theta_Coeffs[NUM_TAPS];

// Filter coefficients for Alpha band

extern float32_t Alpha_Coeffs[NUM_TAPS];

// Filter coefficients for Beta band

extern float32_t Beta_Coeffs[NUM_TAPS];

// Array to store power in Delta Band

float32_t Delta_Power[TEST_LENGTH_SAMPLES];

// Array to store power in Theta Band

float32_t Theta_Power[TEST_LENGTH_SAMPLES];

// Array to store power in Alpha Band

float32_t Alpha_Power[TEST_LENGTH_SAMPLES];

// Array to store power in Beta Band

float32_t Beta_Power[TEST_LENGTH_SAMPLES];

void Init(void);

void Band_Power(float32_t *inputF32 , float32_t *outputF32 ,

float32_t *Coeffs);

int32_t main(void)

{

Init();

Band_Power(EEG_Input , Delta_Power , Delta_Coeffs);

Band_Power(EEG_Input , Theta_Power , Theta_Coeffs);

Band_Power(EEG_Input , Alpha_Power , Alpha_Coeffs);

Band_Power(EEG_Input , Beta_Power , Beta_Coeffs);

}

/*

* Function: Init

* --------------------

* Initialization routine for MSP432.

*

* returns: none

*/

void Init(void)

{

// Stop watchdog timer

WDTCTL = WDTPW | WDTHOLD;

// Core voltaje selection

PCM_setPowerState(PCM_AM_DCDC_VCORE1);

// Operating frequency

B Feature Extraction Codes 71

CS_setDCOFrequency (48000000);

// Clock source selection

CS_initClockSignal(CS_MCLK , CS_DCOCLK_SELECT ,

CS_CLOCK_DIVIDER_1);

}

/*

* Function: Band_Power

* --------------------------

* Computes the power in a certain frequency band. The signal

* is filtered using a FIR filter and then power is computed

* and averaged. The frequency band is given by the filter

* coefficients.

*

* *inputF32: pointer to input signal array

* *outputF32: pointer to the array that will store power

* *Coeffs: pointer to the filter coefficients array

*

* returns: none

*/

void Band_Power(float32_t *inputF32 , float32_t *outputF32 ,

float32_t *Coeffs)

{

uint32_t i;

uint32_t j;

// Size of blocks to compute filtering

uint32_t blockSize = BLOCK_SIZE;

// Number of block that will be filtered

uint32_t numBlocks = (TEST_LENGTH_SAMPLES / BLOCK_SIZE);

// FIR state array

float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1];

// Variable to calculate power

float32_t Power_aux;

// FIR instance

arm_fir_instance_f32 S;

// Call FIR init function to initialize the instance structure

arm_fir_init_f32 (&S, NUM_TAPS , (float32_t *)&Coeffs [0],

&firStateF32 [0], blockSize);

// Call the FIR process function for every blockSize samples

for(i=0; i < numBlocks; i++)

{

arm_fir_f32 (&S, inputF32 + (i * blockSize),

outputF32 + (i * blockSize), blockSize);

}

// Power computation

for (i = 0; i < TEST_LENGTH_SAMPLES; i++)

{

outputF32[i] *= outputF32[i];

}

72 B.2 Welch’s method

// Moving Average computation

for (i = 0; i < TEST_LENGTH_SAMPLES

- MOVING_AVERAGE_SAMPLES; i++)

{

Power_aux = 0;

for (j = 0; j < MOVING_AVERAGE_SAMPLES; j++)

{

Power_aux += outputF32[i + j];

}

outputF32[i] = Power_aux / MOVING_AVERAGE_SAMPLES;

}

for (i = TEST_LENGTH_SAMPLES - MOVING_AVERAGE_SAMPLES;

i < TEST_LENGTH_SAMPLES; i++)

{

outputF32[i] = 0;

}

}

B.2 Welch’s method

/*

* FFT EEG Feature Extraction

* -----------------------------

* This code takes an EEG input signal and computes

* Power Spectral Density (PSD) using Welch ’s method.

*

* Author: David Barahona Pereira

*

* Email address: davidbp .13 @gmail.com

*

* Institution: Costa Rica Institute of Technology

* Karlsruhe Institute of Technology

*

* Last revision: 13/09/2016

*/

#include <stdio.h>

#include "msp.h"

#include "arm_math.h"

#include "arm_const_structs.h"

#include "driverlib.h"

// Elements in input array (Power of 2 and MINIMUM 256)

#define TEST_LENGTH_SAMPLES 512

// Sampling frequency of input data

#define SAMPLING_F 160

// Length for each window

#define WINDOW_LENGTH (TEST_LENGTH_SAMPLES / 4)

// Length of FFT array

#define FFT_LENGTH (WINDOW_LENGTH / 2)

// Number of overlapped windows

B Feature Extraction Codes 73

#define NUMBER_OF_WINDOWS ((2 * TEST_LENGTH_SAMPLES

/ WINDOW_LENGTH) - 1)

// EEG reading

extern float32_t EEG_Input[TEST_LENGTH_SAMPLES];

// Array to store PSD

float32_t PSD[FFT_LENGTH];

void Welch(float32_t *testInput , float32_t *testOutput);

void Init(void);

int32_t main(void)

{

Init();

Welch(EEG_Input , PSD);

}

/*

* Function: Init

* --------------------

* Initialization routine for MSP432

*

* returns: none

*/

void Init(void)

{

// Stop watchdog timer

WDTCTL = WDTPW | WDTHOLD;

// Core voltaje selection

PCM_setPowerState(PCM_AM_DCDC_VCORE1);

// Operating frequency

CS_setDCOFrequency (48000000);

// Clock source selection

CS_initClockSignal(CS_MCLK , CS_DCOCLK_SELECT ,

CS_CLOCK_DIVIDER_1);

}

/*

* Function: Welch

* --------------------------

* Computes the Power Spectral Density (PSD) of an input signal

* using Welch ’s method. The algorithm performs an overlapping

* windowing of the input signal , then computes the periodogram

* for each window and finally calulates an average of all

* periodograms to estimate PSD.

*

* *testInput: pointer to input signal array

* *testOutput: pointer to the array that will store PSD

*

* returns: none

*/

74 B.2 Welch’s method

void Welch(float32_t *testInput , float32_t *testOutput)

{

uint32_t i;

uint32_t j;

// 0 for FFT / 1 for IFFT

uint32_t ifftFlag = 0;

// Size of FFT array

uint32_t fftSize = FFT_LENGTH;

// Variable for periodograms averaging

float32_t testOutput_aux;

// Bidimentional array to store overlapping windows

float32_t windows[NUMBER_OF_WINDOWS][WINDOW_LENGTH];

// Bidimentional array to store the one sided FFT of each window

float32_t windows_fft[NUMBER_OF_WINDOWS][WINDOW_LENGTH];

// Bidimentional array to storethe magnitude of the FFT

float32_t windows_mag[NUMBER_OF_WINDOWS][FFT_LENGTH];

// FFT status

arm_status status;

// FFT instance

arm_rfft_fast_instance_f32 S;

// Windowing in input signal

for (i = 0; i < NUMBER_OF_WINDOWS; i++)

{

for (j = 0; j < WINDOW_LENGTH; j++)

{

windows[i][j] = testInput[j +

i * (WINDOW_LENGTH /2)];

}

}

// FFT init routine

status = arm_rfft_fast_init_f32 (&S, WINDOW_LENGTH);

if(status != ARM_MATH_SUCCESS)

{

while (1);

}

// Computes the magnitude of the complex one sided FFT

for (i = 0; i < NUMBER_OF_WINDOWS; i++)

{

arm_rfft_fast_f32 (&S, windows[i], windows_fft[i],

ifftFlag);

arm_cmplx_mag_f32(windows_fft[i], windows_mag[i],

fftSize);

}

// Periodogram calculation

for (i = 0; i < NUMBER_OF_WINDOWS; i++)

{

for (j = 0; j < FFT_LENGTH; j++)

B Feature Extraction Codes 75

{

windows_mag[i][j] = (windows_mag[i][j] *

windows_mag[i][j]) / (FFT_LENGTH * SAMPLING_F);

}

}

// Periodograms averaging

for (i = 0; i < FFT_LENGTH; i++)

{

testOutput_aux = 0;

for (j = 0; j < NUMBER_OF_WINDOWS; j++)

{

testOutput_aux += windows_mag[j][i];

}

testOutput[i] = testOutput_aux / NUMBER_OF_WINDOWS;

}

testOutput [0] /= 2;

}

B.3 DWT

/*

* DWT EEG Feature Extraction

* -----------------------------

* This code takes an EEG input signal and computes

* a multilevel Discrete Waveletet Transform (DWT)

* to extract power in Delta , Theta , Alpha and Beta

* frequency bands.

*

* Author: David Barahona Pereira

*

* Email address: davidbp .13 @gmail.com

*

* Institution: Costa Rica Institute of Technology

* Karlsruhe Institute of Technology

*

* Last revision: 16/09/2016

*/

#include <stdio.h>

#include "msp.h"

#include "arm_math.h"

#include "math_helper.h"

#include "driverlib.h"

// Elements in input array

#define INPUT_SIZE 512

// Decomposition level

#define LEVEL 4

// Coefficients in decomposition filters

#define FILTER_LENGTH 8

76 B.3 DWT

// EEG reading

extern float32_t EEG_Input[INPUT_SIZE];

// Low pass decomposition coefficients

extern float32_t Lo_D[FILTER_LENGTH];

// High pass decomposition coefficients

extern float32_t Hi_D[FILTER_LENGTH];

// Power calcualted from the coefficients

float32_t Power[INPUT_SIZE];

// Array to keep track of each level in power array

float32_t Lengths[LEVEL + 2];

void Init(void);

void wavedec(float32_t *Input , float32_t *Coefficients ,

float32_t *Lengths);

int32_t main(void)

{

Init();

wavedec(EEG_Input , Power , Lengths);

}

/*

* Function: Init

* --------------------

* Initialization routine for MSP432

*

* returns: none

*/

void Init(void)

{

// Stop watchdog timer

WDTCTL = WDTPW | WDTHOLD;

// Core voltaje selection

PCM_setPowerState(PCM_AM_DCDC_VCORE0);

// Operating frequency

CS_setDCOFrequency (3000000);

// Clock source selection

CS_initClockSignal(CS_MCLK , CS_DCOCLK_SELECT ,

CS_CLOCK_DIVIDER_1);

}

/* Function: wavedec

* --------------------------

* Computes a multilevel discrete wavelet decomposition

* of an input vector

*

* *Input: input signal array

* Coefficients: output array that will store the coeffiencients

* as [cAn , cDn , cDn -1, ..., cD1)

* Lengths: output array that will store the length of each level

* as [cAn_length , cDn_length , cDn -1_length , ..., cD1_length]

B Feature Extraction Codes 77

*

* returns: none

*/

void wavedec(float32_t *Input , float32_t *Coefficients ,

float32_t *Lengths)

{

uint32_t i;

uint32_t j;

// Size of array that will be decomposed

uint32_t Samples;

// Keeps track of where to place the result of each

// decomposition

uint32_t Index_Deco = 0;

// Size of convolution of the input and filter

uint32_t F_G_Size;

// Size of approximation and details arrays

uint32_t cA_cD_Size;

// Number of taps in the filter

uint32_t Taps = FILTER_LENGTH;

// Size of intermediate decomposition array

uint32_t Output_Size = 0;

// Tracks position in coefficients array

uint32_t Index_Coeff;

// Pointers to filters , convolution and coefficients arrays

float32_t *lo, *hi, *F, *G, *cA, *cD, *Decomposition;

// Block sizes for Hi and Lo decomposition before

// downsampling (after is the same /2)

uint32_t Level_Size[LEVEL];

// Initializes the array that will store the size for

// the decomposition blocks

Level_Size [0] = INPUT_SIZE + FILTER_LENGTH - 2;

for(i = 1; i < LEVEL; i++)

{

Level_Size[i] = (Level_Size[i-1] / 2)

+ FILTER_LENGTH - 1;

}

// Calculates the size of the output decomposition array

for(i = 0; i < LEVEL; i++)

{

Output_Size += Level_Size[i];

}

// Computes DWT for each level

Decomposition = (float32_t *) malloc(sizeof(float32_t)

* Output_Size);

for (i = 0; i < LEVEL; i++)

{

// Takes input for the first level decomposition

if(i == 0)

78 B.3 DWT

{

Samples = INPUT_SIZE;

}

// Takes the low decomposition of the preceding level

else

{

Samples = Level_Size[i - 1] / 2;

Input = (float32_t *) malloc(sizeof(float32_t)

* Samples);

for(j = 0; j < Samples; j++)

{

Input[j] = Decomposition[j +

Index_Deco];

}

Index_Deco += Level_Size[i - 1];

}

// Computes a one level decomposition

F_G_Size = Level_Size[i];

cA_cD_Size = F_G_Size / 2;

// Dynamic allocation of convolution and coefficients

// arrays

F = (float32_t *) malloc(sizeof(float32_t)*F_G_Size);

G = (float32_t *) malloc(sizeof(float32_t)*F_G_Size);

cA = (float32_t *) malloc(sizeof(float32_t)*cA_cD_Size);

cD = (float32_t *) malloc(sizeof(float32_t)*cA_cD_Size);

// Pointers to low and high pass decomposition filters

lo = &Lo_D [0];

hi = &Hi_D [0];

// Convolution between signal and the low and high pass

// filter

arm_conv_f32(Input , Samples , lo , Taps , F);

arm_conv_f32(Input , Samples , hi , Taps , G);

// Downsampling

for(j=0; j < cA_cD_Size; j++)

{

cA[j] = F[2 * j + 1];

cD[j] = G[2 * j + 1];

}

// Stores approximation and details coefficients in one

// array

for(j=0; j < cA_cD_Size; j++)

{

Decomposition[j + Index_Deco] = cA[j];

Decomposition[j + Index_Deco + cA_cD_Size]

= cD[j];

B Feature Extraction Codes 79

}

// Memory release

free(F); F = NULL;

free(G); G = NULL;

free(cA); cA = NULL;

free(cD); cD = NULL;

free(Input); Input = NULL;

}

// Computes coefficients as MATLAB

Index_Deco = Output_Size - Level_Size[LEVEL - 1];

Index_Coeff = 0;

for(i = 0; i < LEVEL; i++)

{

// Moves decomposition details data to the coefficients

// array

for(j = 0; j < Level_Size[LEVEL - 1 - i] / 2; j++)

{

Coefficients[j + Index_Coeff] =

Decomposition[j + Index_Deco];

}

// Stores decomposition approximation for the last level

// and/or calculates indexes for next iteration

if(i == 0)

{

Index_Deco += Level_Size[LEVEL - 1 - i] / 2;

Index_Coeff += Level_Size[LEVEL - 1 - i] / 2;

for(j = 0; j < Level_Size[LEVEL - 1 - i] / 2;

j++)

{

Coefficients[j + Index_Coeff] =

Decomposition[j + Index_Deco];

}

Index_Deco -= (Level_Size[LEVEL - 1 - i]

+ Level_Size[LEVEL - 2 - i]) / 2;

Index_Coeff += Level_Size[LEVEL - 1 - i] / 2;

}

else

{

Index_Deco -= (Level_Size[LEVEL - 1 - i]

+ Level_Size[LEVEL - 2 - i]) / 2;

Index_Coeff += Level_Size[LEVEL - 1 - i] / 2;

}

}

// Builds an array containing wavelet sizes

for(i = 0; i < LEVEL + 1; i++)

{

if(i >= 2)

80 B.3 DWT

{

Lengths[i] = Level_Size[LEVEL - i] / 2;

}

else

{

Lengths [0] = Level_Size[LEVEL - 1] / 2;

Lengths [1] = Level_Size[LEVEL - 1] / 2;

Lengths[LEVEL + 1] = INPUT_SIZE;

}

}

// Power computation

for (i = 0; i < INPUT_SIZE; i++)

{

Coefficients[i] *= Coefficients[i];

}

free(Decomposition); Decomposition = NULL;

}

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Document Structure

	2 Feature Extraction Techniques in EEG
	2.1 EEG and Applications
	2.2 Signal Processing Path
	2.2.1 Preprocessing
	2.2.2 Feature Extraction
	2.2.3 Classification

	2.3 Feature Extraction Techniques
	2.3.1 Filter Based Feature Extraction
	2.3.2 FFT Based Feature Extraction
	2.3.3 DWT Based Feature Extraction
	2.3.4 Feature Extraction Techniques Overview

	3 Simulation and Exploration of Feature Extraction Techniques
	3.1 Test Signal
	3.2 Filter Based Techniques
	3.2.1 FIR
	3.2.2 IIR
	3.2.3 Comparison

	3.3 FFT Based Techniques
	3.3.1 Periodogram
	3.3.2 Welch's Method
	3.3.3 Comparison

	3.4 DWT Based Techniques
	3.4.1 DWT
	3.4.2 WPT
	3.4.3 Comparison

	3.5 Comparison between techniques

	4 Hardware Platform and Measurement Procedure
	4.1 Platform Overview
	4.2 Measurement Procedure
	4.2.1 Execution Time
	4.2.2 Memory Usage
	4.2.3 Power Consumption

	5 Implementation of Feature Extraction Techniques
	5.1 CMSIS DSP Software Library
	5.2 Microcontroller Implementation
	5.2.1 FIR Feature Extraction
	5.2.2 Welch's Method Feature Extraction
	5.2.3 DWT Feature Extraction

	5.3 Optimizations
	5.3.1 Execution Time and Memory Usage
	5.3.2 Power Consumption

	6 Evaluation of Feature Extraction Techniques
	6.1 Execution Time
	6.2 Memory Usage
	6.3 Power Consumption
	6.4 Overall Evaluation

	7 Conclusions
	Bibliography
	A Acronyms and Abbreviations
	B Feature Extraction Codes
	B.1 FIR
	B.2 Welch's method
	B.3 DWT

