
On the Significance of Leaf Sides in Automatic
Leaf-based Plant Species Identification
Carranza-Rojas, Jose (jcarranza@itcr.ac.cr); Mata-Montero, Erick (emata@itcr.ac.cr)

PARMA Group, School of Computing
Costa Rica Institute of Technology

Cartago, Costa Rica

Abstract—Because the front side of a leaf and the
underside are functionally very different – the former
captures sunlight to produce photosynthesis and the
latter absorbs carbon dioxide and releases oxygen and
vapor – they typically have different visual features. In
this paper we study the significance of leaf sides in
visual recognition systems for automatic plant species
identification. We measure the accuracy of species
identifications with a dataset of 63 species of trees
from Costa Rica that includes pictures of both, front
sides and undersides of tree leaves. The dataset is
used as a global dataset and is also partitioned as two
datasets: one of front side pictures and one of underside
pictures. Training and testing of different algorithms is
performed and their accuracies computed for the group
of species and for each individual species. For the tested
dataset, leaf side is a significant factor for automatic
plant species identification. On the average, and for
most cases, underside pictures lead to more accurate
identifications.

Index Terms—Biodiversity Informatics, Computer Vi-
sion, Image Processing, Plant Identification

I. Introduction

Automatic identification of organisms has not only
been a dream among systematists for centuries [1],
but also a current need to understand, sustainably
use, and save biodiversity. Several automatic and semi-
automatic approaches have been used in the past. For
example, dichotomous keys, multi-access keys, mor-
phometrics, DNA barcoding, and image-based identifi-
cation, among others [2]. A number of computer vision
and machine learning techniques use leaf images to
identify plant species [3], [4], [5], [6]. It is usually
assumed that a user takes a picture P of the front
side of a specimen’s leaf, which is then used by an
algorithm or model M to establish a ranking of the
best k candidate species for P , for some "small" value
of k (e.g., 1 ≤ k ≤ 5). Supervised training techniques
are typically used to train model M with leaf image
datasets that often include pictures of the front side
and the underside of leaves of specimens that have
been previously identified. Because research that aims

to identify plants based on leaf images alone tries to get
the best out of the leaf visible features, it is important
to consider as many leaf discriminant factors as possi-
ble. Nevertheless, to our knowledge, previous research
on automatic visual plant species identification based
on leaf images use front side and underside pictures
indiscriminately.

From a functional point of view, the front side and
the underside of a leaf are in charge of two different
critical tasks. The front side surface gathers energy
from sunlight while apertures (stomata) on the the
cooler shady underside bring in carbon dioxide and
release oxygen and vapor. As a result, the front side
and the underside of a leaf tend to have a different
appearance. The front side tends to be glossy and has
more vivid colors while the underside may have more
trichomes (hairs) to keep the surface cool, could be
duller, and veins could be more visible.

In this paper we study the significance of leaf sides
in automatic visual plant species identification based
on leaf images. Our hypothesis is that an automated
leaf image-based plant identification system benefits
from having the training dataset split into two subsets:
one that comprises front side pictures only and one
that consists of back side pictures only, which leads
to two different plant identification models that we
call ModelF and ModelB, respectively. We postulate
that ModelF and ModelB would be more accurate than
M when the image P corresponds to the front and
back side of a leaf, respectively. As a pragmatic con-
sequence, when a user provides a picture P for an
automatic identification, they should indicate the leaf
side so that either ModelF or ModelB is used. However,
even if the hypothesis does not hold true, it may still
be significant if P is a front side or an underside
picture when a general model M is used. Therefore,
our experiments also address this issue.

Because of the rich diversity of plant and even tree
species in Costa Rica, we realize that the results of
this research are affected by the subset of species



used. Some species may have front sides of leaves that
are very distinctive while others may have undersides
that are more discriminating. The accuracy achieved
globally for the dataset used in this research may not
reflect the importance of leaf sides in automatic plant
species identification for individual species. Thus, our
experiments also assess, for each of the 63 species in
the dataset, the accuracy of models ModelF , ModelB,
and M when picture P corresponds to either the front
side or the underside of a leaf.

The rest of this manuscript is organized as follows:
Section II summarizes relevant related work. Section
III and Section IV cover methodological aspects and ex-
periment design, respectively. Section V describes the
results obtained. Section VI presents the conclusions
and, finally, Section VII summarizes future work.

II. Related Work

Previous research on leaf image-based identification
of plant species has been reported in [3], [7], [4], and
[6]. LeafSnap [3] uses a curvature model and similarity
search using k-Nearest Neighbors (kNN) with an image
dataset of North American trees that comprises 184
species. Herdiyeni et al. [7] use Local Binary Patterns
(LBP) features to classify medicinal and house plants
from Indonesia based also on leaf images, for a total of
30 species. Nguyen et al. [4] use Speeded Up Robust
Features (SURF) to develop an Android application for
mobile plant species recognition based on leaf images
of 32 species. Finally, [6] extends work in [3] along
two lines. First, LeafSnap’s underlying algorithms are
applied to a set of 66 tree species from Costa Rica.
Secondly, texture is used as an additional criterion
to measure the level of improvement achieved in the
automatic identification of Costa Rica tree species.
None of these studies address the issue of significance
of leaf sides in automatic leaf-based plant species iden-
tification.

III. Methodology

We used the same approach as [3] and [6] to classify
leaves into species of plants. The dataset of images
is a subset of the one used in [6]. However, a first
step was to add metadata indicating the leaf side of
each image. Then, leaf segmentation was carried out by
using Expectation-Maximization (EM). After that, two
leaf features were extracted, namely (visual) texture
and curvature. Then, classification was done using kNN
with 3 ≤ k ≤ 5 and using histogram intersection as
distance metric. Finally, the accuracy achieved by the
classifier was calculated.

Th following subsections provide more details about
the image data used, the segmentation approach, and
the algorithms used for feature extraction.

A. Image Data

The dataset created by Carranza et al. [6] was used
almost in its entirety; it includes images of 63 species of
ranomly picked trees from Costa Rica’s central plateau
region. Labels were added to logically separate leaf
front side from leaf underside images, which allowed
us to experiment with each image dataset separately
or in combined form. Following the notation presented
in Section I, TrainF is the subset that comprises all
998 front side leaf images, TrainB is the subset that
contains all 991 back side leaf images, and finally
TrainC is the complete dataset with all 1989 images
combined.

B. Segmentation

For segmentation we used the Hue Saturation Value
(HSV) color space to cluster pixels into two clusters
using EM. However, we discarded the Hue channel
since it often contains too much noise. One cluster
corresponds to the lamina (leaf blade) and the other
one to the background.

C. Features

We extracted two different feature sets, one for
texture and one for margin or curvature. The following
subsections explain briefly both algorithms.

1) Local Binary Patterns Uniform (LBPU): As men-
tioned in Section I, the front and back side of a leaf
typically display different textures. LBPU is a feature
extraction algorithm that is rotation invariant and has
been proved to be excellent for texture pattern match-
ing [8]. The following three different variations of LBPU
are used:

• Radius of 1 pixel, 8 pixels of sampling. We call it
R1P8.

• Radius of 3 pixels, 16 pixels of sampling. We call
it R3P16.

• The concatenation of the previous 2 into a single
histogram. We call it R1P8P3P16.

A LBPU descriptor is applied to each pixel c in the
image and its circular neighborhood Neighborhood(c)

that has radius R and P pixels. For each pixel p in
Neighborhood(c), p has a gray level gray(p). A boolean



threshold function is applied to the difference of gray
value between each pixel p from the neighborhood of
c and the central pixel c, to form a binary number of
length P . To achieve rotation invariance, right shifts
are applied to the binary number and then the mini-
mum number is selected.

2) Histogram of Curvature over Scale (HCoS): This
descriptor was developed by the authors in [3]. First,
a disk of radius 1 ≤ r ≤ 25 is defined at every contour
pixel of the leaf. Then, two different histograms are
created by measuring the pixel area of the intersection
of the disk with the leaf and the length of the arc
defined by the intersection of the circumference of the
disk and the leaf. This is calculated for all 25 values
of radius r and concatenated together into a single
histogram called HCoS.

This curvature descriptor, as well as the LBPU vari-
ants described, are levels of the factor named Algo-
rithm, as explained in Section IV, which describes the
experiments. Even though the curvature of the front
side and the back side of a leaf are mirror images of
each other, this feature was included in the analysis
just to determine if it is relevant or should be discarded
in future analysis.

D. Trained Models and Classification

Classification was carried out by using kNN with 3 ≤
k ≤ 5, which, from a user point of view, is a reasonable
range of "small" values of k. To calculate the distance
between histograms, we used histogram intersection
as described in [3].

Three algorithms or trained models were defined.
ModelF is the model trained with only front side im-
ages, ModelB is the model trained with back side
images, and ModelC is the model trained with with the
complete image dataset.

We calculated the accuracy of the different models.
Let E be an identification experiment that consists of
a model M , a set S that contains n images of leaves
of n (not necessarily different) unknown tree species
to be identified, and an integer value k, k ≥ 1. We
define hit(M,k, x) as a boolean function that indicates
if model M generates a ranking in which one of the top
k candidate species is a correct identification of sample
x. Equation 1 formally defines Accuracy(M,S, k).

Accuracy(M,S, k) =
∑

x∈S

hit(M,k, x)

n
(1)

Table I: Levels for Training+Model factor

Level Description

TestB +ModelB Model tested with back side images
and trained with back side images

TestB +ModelC Model tested with back side images
and trained with complete dataset

TestC +ModelC Model tested with complete dataset
and trained with complete dataset

TestF +ModelC Model tested with front side images
and trained with complete dataset

TestF +ModelF Model tested with front side images
and trained with front side images

TestB +ModelF Model tested with back side images
and trained with front side images

TestF +ModelB Model tested with front side images
and trained with back side images

IV. Experiments

We ran the classifier over the two datasets TrainF

and TrainB to get the accuracy related to front side
and back side leaf images. We also ran it for the com-
plete, combined dataset TrainC . Additionally, we used
a General Linear Model (GLM) to test if the leaf side
was actually a significant factor during classification,
with a confidence level of 95%. The three factors used
in the GLM are: Algorithm, k, and Training+Model.
Factor Training+Model represents the combination of
a particular trained model, and the dataset used for
testing. Table I shows the seven levels related to this
factor. We used 3 ≤ k ≤ 5 only, since those values would
be suitable for a species ranking for a mobile app or
similar.

After finding if the Training+Model factor was sig-
nificant, a Tukey test was run to assess if the difference
between levels for the Training+Model was statisti-
cally significative, with a confidence level of 95%. This
would tell us how relevant leaf side are across the tests.

We ran this globally for all species, but we also ran
the GLM for each species separately. This would tell us
the role of the leaf side for each species.

V. Results

A. Global significance of leaf side

Table II summarizes the obtained P-Values for each
of the three factors and their interactions. All datasets
and all feature extraction algorithms (texture and cur-
vature) were used, for 3 ≤ k ≤ 5. The most important
factor to our experiments is Training+Model which
obtained a p-Value of 0%, suggesting leaf side signif-
icance on both training and testing. Notice also that
Training+Model is significant together with Algorithm,
which means that some feature extraction algorithms



Table II: Global GLM results at a 95% confidence.
R-sq = 99.96%

Source P-Value

k 0.000
Algorithm 0.000
Training+Model 0.000
k*Algorithm 0.000
k*Training+Model 0.022
Algorithm*Training+Model 0.000

Table III: Tukey Pairwise Comparisons at a 95%

confidence, for factor Training+Model

Training+Model Accuracy Mean Grouping

TestB +ModelB 0.80 A
TestB +ModelC 0.79 B
TestC +ModelC 0.76 C
TestF +ModelC 0.74 D
TestF +ModelF 0.73 E
TestB +ModelF 0.37 F
TestF +ModelB 0.31 G

may work better or worse depending on the leaf side
images used for training and testing.

Table III summarizes the results of running the Tukey
test for Training+Model. The mean is computed over
the accuracy obtained for all feature extraction algo-
rithms and 3 ≤ k ≤ 5, for each Training+Model level.
Group A, which uses TestB (tested with back images)
and ModelB (trained with back images), achieves the
best average accuracy. Group B, which is closely re-
lated to Group A, but slightly inferior, also uses TestB
for testing, but the combined ModelC for training. This
suggests that globally, the identification of back side
images P is better than when P is a front side image
(except if the model used is ModelF ).

It is interesting to note that when P is a front side
image, the combined ModelC is slightly better than
using a more specialized ModelF .

Additionally, it is worth noting that, consistent with
intuition, testing with TestB but training with ModelF ,
and vice-versa, is not a good idea.

For the sake of completeness, we also ran tests for
the curvature algorithm alone. Not surprisingly, the
worst cases are also TestB − ModelF and TestF −
ModelB, but with a higher accuracy of 67% in both
cases. Compared to the Tukey test that contains both
curvature and texture in Table III, which was as low as
37%, this 67% is much better. This shows that internal
texture patterns differ between leaf sides for classifica-
tion and that curvature does not suffer as much when
one side or the other of the leaf is used.

B. Significance of leaf side per species

Table IV shows the results of the GLM applied to
each of the 63 species. For 39 species (61.9%) the best
accuracy is obtained when back side images P are
used. For 16 species (23.8%) the highest accuracy is
obtained when P is a front side image. Finally, for 9
species (14.2%) there is no clear winner. This means
that a large group of species are better classified when
P is a back side image, but there is also another
group of species that have better results when P is
a front side image. In the context of a software tool,
this individualized analysis is important for use cases
in which the user is trying to determine if image P

corresponds to a given species. For example, if we want
to determine if P is an image of Brosimum alicastrum,
we may get better accuracy in the automatic identifi-
cation if P is a back side image and the model was
trained with a dataset of back side images (although a
general ModelC would not be too bad). However, if we
want to determine if P is an image of Quercus insignis,
we may get better accuracy if P is a front side image
and the model was trained with a dataset of front side
images (although a general ModelC would not be too
bad either).

A visual example of the difference between leaf sides
is shown in Figure 1 for species Brosimum alicastrum.
Visually, both images show how images of the leaf side
of a single individual differ. For this particular species,
the accuracy ranges from 91% for the back side subset,
down to 74% for the front side subset, according to
Table IV. For the combined or complete dataset the
obtained accuracy is 80%.

VI. Conclusions

For the tested dataset, leaf side is a significant
factor for automatic plant species identification. On
the average, and for most cases, underside pictures
lead to more accurate identifications. For most species
(61.9%), classification is better if the sample P to be
identified is a back side leaf image; in a smaller number
of cases (23.8%) a front side image P gives better
results.

In agreement with intuition, the worst accuracy is
obtained when the model is trained with back side
images and tested with front side images and vice-
versa.

However, it should be noticed that the above conclu-
sions are due to the differences in texture displayed
in the back and front sides of leaves. Because the
curvature of the front side and the back side of a



Table IV: Accuracy mean per species for the Training+Model factor. Highlighted values belong to the most
significant group according to the Tukey tests

Species TestB +ModelB TestB +ModelC TestF +ModelF TestF +ModelC TestC +ModelC

Acnistus arborescens 0.75 0.80 0.69 0.77 0.79
Aegiphila valerioi 0.63 0.64 0.47 0.55 0.6
Annona mucosa 0.64 0.60 0.47 0.5 0.55
Ardisia revoluta 0.75 0.75 0.55 0.6 0.68
Blakea maurofernandeziana 0.94 0.98 0.81 0.81 0.9
Brosimum alicastrum 0.91 0.90 0.74 0.69 0.8
Calophyllum brasiliense 0.87 0.85 0.68 0.67 0.76
Calycophyllum candidissimum 0.83 0.83 0.71 0.68 0.75
Cestrum tomentosum 0.80 0.80 0.75 0.77 0.78
Citharexylum donnell-smithii 0.77 0.82 0.68 0.67 0.75
Clethra costaricensis 0.75 0.65 0.64 0.7 0.67
Clusia croatii 0.95 0.89 0.81 0.76 0.83
Coccoloba floribunda 0.64 0.63 0.49 0.52 0.58
Cordia eriostigma 0.68 0.67 0.55 0.55 0.61
Croton draco 0.98 0.87 0.74 0.77 0.82
Croton niveus 0.85 0.84 0.79 0.79 0.81
Dalbergia retusa 0.85 0.80 0.65 0.65 0.73
Ficus cotinifolia 0.91 0.87 0.85 0.87 0.87
Guazuma ulmifolia 0.93 0.93 0.85 0.83 0.88
Hyeronima alchorneoides 0.8 0.81 0.71 0.71 0.76
Manilkara chicle 0.86 0.85 0.75 0.78 0.81
Ocotea sinuata 0.84 0.86 0.83 0.82 0.84
Persea americana 0.78 0.76 0.64 0.62 0.69
Pimenta dioica 0.9 0.9 0.58 0.58 0.74
Platymiscium pinnatum 0.70 0.71 0.6 0.57 0.64
Posoqueria latifolia 0.72 0.66 0.48 0.5 0.58
Quercus corrugata 0.97 0.95 0.85 0.88 0.91
Robinsonella lindeniana var. divergens 1 1 0.93 0.94 0.97
Sapium glandulosum 0.82 0.80 0.73 0.73 0.76
Sideroxylon capiri 0.80 0.76 0.54 0.52 0.65
Simarouba glauca 0.97 0.95 0.65 0.63 0.79
Swietenia macrophylla 0.73 0.71 0.67 0.65 0.68
Tabebuia ochracea 0.79 0.82 0.67 0.65 0.73
Tabebuia rosea 0.83 0.83 0.5 0.5 0.66
Tabernaemontana litoralis 0.77 0.77 0.67 0.67 0.72
Terminalia amazonia 0.86 0.89 0.84 0.83 0.86
Terminalia oblonga 0.81 0.81 0.58 0.64 0.72
Trichilia havanensis 0.77 0.67 0.68 0.7 0.68
Vernonia patens 0.94 0.93 0.87 0.84 0.89

Anacardium excelsum 0.72 0.75 0.75 0.80 0.78
Bauhinia purpurea 0.83 0.84 0.85 0.87 0.85
Colubrina spinosa 0.69 0.7 0.89 0.88 0.79
Dendropanax arboreus 0.53 0.47 0.56 0.57 0.52
Dipteryx panamensis 0.69 0.68 0.73 0.76 0.72
Eugenia hiraeifolia 0.83 0.79 0.87 0.95 0.87
Genipa americana 0.56 0.59 0.69 0.80 0.7
Heliocarpus appendiculatus 0.84 0.86 0.89 0.97 0.92
Hymenaea courbaril 0.61 0.62 0.82 0.82 0.72
Pachira quinata 0.79 0.76 0.8 0.78 0.77
Platymiscium parviflorum 0.65 0.61 0.62 0.7 0.65
Quercus insignis 0.8 0.82 0.94 0.93 0.87
Samanea saman 0.8 0.78 0.9 0.86 0.82
Stemmadenia donnell-smithii 0.35 0.38 0.75 0.73 0.57
Urera caracasana 0.94 0.94 0.97 0.85 0.94

Astronium graveolens 0.84 0.85 0.77 0.83 0.84
Erythrina poeppigiana 0.65 0.7 0.68 0.71 0.7
Hura crepitans 0.83 0.84 0.79 0.84 0.84
Psidium guajava 0.75 0.66 0.73 0.65 0.66
Solanum rovirosanum 0.68 0.70 0.65 0.69 0.69
Tabebuia impetiginosa 0.82 0.8 0.84 0.83 0.82
Bauhinia ungulata 0.79 0.79 0.81 0.79 0.79
Cedrela odorata 0.89 0.87 0.87 0.91 0.89
Muntingia calabura 0.95 94 0.93 0.93 0.94



(a) Front side image of a Brosimum alicastrum sample.

(b) Back side image of a Brosimum alicastrum sample.

Figure 1: Difference between sides of the same leaf
specimen of Brosimum alicastrum.

leaf are mirror images of each other, this feature is
not sensibly affected by which side of the leaves are
used. Thus, tools based on curvature analysis alone
such as LeafSnap [3] would not be affected by the
indiscriminate use of leaf front and back side images.

VII. Future Work

Other feature extraction algorithms such as point
of interest should undergo a similar type of analysis.
Additionally, it is important to understand if different
leaf regions such as the apex, base, or petiole have
significant features. Understanding this could also help
in classifying species even when the leaf is partially
damaged or only a portion of it is available. Because
the results of this type of research are affected by the
subset of species used, it is very important to create
a national level or global level leaf image dataset with

as many species as possible. As more leaf image data
becomes available, analysis by geographic regions,
higher level taxa, special interest taxa (e.g., endan-
gered species and species of economic interest), and
other groups would be extremely useful for biodiversity
conservation. Also, as more leaf data are gathered
and made available, approaches such as ConvNets [9]
would be more feasible for identification even with
complex backgrounds.
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