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Abstract: In this paper we explore the methodology of model order reduction based on singular
perturbations for a flexible-joint robot within the port-Hamiltonian framework. We show that a
flexible-joint robot has a port-Hamiltonian representation which is also a singularly perturbed
ordinary differential equation. Moreover, the associated reduced slow subsystem corresponds to
a port-Hamiltonian model of a rigid-joint robot. To exploit the usefulness of the reduced models,
we provide a numerical example where an existing controller for a rigid robot is implemented.

1. INTRODUCTION

This document explores the model order reduction of a
port-Hamiltonian (PH) system based on singular pertur-
bations. The case study is a flexible-joint robot. By a series
of transformations we show that a model for a flexible-joint
robot can be written as 1) a PH system and 2) a singularly
perturbed ordinary differential equation. Afterwards we
show the effect of a composite control based on the reduced
subsystems.

In the Euler-Lagrange (EL) framework, position control
robotic systems have been thoroughly discussed in e.g.,
Canudas-de Wit et al. (1996); Murray et al. (1994); Ortega
et al. (1998); Spong et al. (2006). In such a framework,
the control design is based on selecting a suitable storage
function that ensures position control. However, the de-
sired storage function under the EL framework does not
qualify as an energy function in any physical meaningful
sense as stated in Canudas-de Wit et al. (1996); Ortega
et al. (1998).

The PH modeling framework of van der Schaft and
Maschke (2003); van der Schaft (2000) has received a
considerable amount of interest in the last decade because
of its insightful physical structure. It is well known that a
large class of (nonlinear) physical systems can be described
in the PH framework. The popularity of PH systems can
be largely accredited to its application to analysis and
control design of physical systems, e.g. Duindam et al.
(2009); Fujimoto and Sugie (2001); van der Schaft and
Maschke (2003); van der Schaft (2000). Control laws in
the PH framework are derived with a clear physical in-
terpretation via direct shaping of the closed-loop energy,
interconnection, and dissipation structure, see Duindam
et al. (2009); van der Schaft (2000).

On the other hand, model order reduction plays a crucial
role in control design as well. Being able to synthesize
controllers with a low number of variables is always more

convenient. Moreover, it is convenient as well to use reduc-
tion methods that preserve the structure of the original
system, van der Schaft and Polyuga (2009); Polyuga and
van der Schaft (2010); Scherpen and van der Schaft (2008).
One of the several model reduction methods is based on
singular perturbations, which is often applied to systems
with two or more time-scales. It is known that under cer-
tain hyperbolicity properties (see Section 2) it is possible
to obtain reduced models corresponding to systems in
distinct time scales. The behavior of the full system can
be inferred by an analysis of the reduced systems.

In the following sections we present a case study where
model order reduction, based on singular perturbation, is
applied to a PH system. In Section 2, we present a general
background in the PH framework, especially for a class of
standard mechanical systems. Furthermore, we recall the
results of Viola et al. (2007) to equivalently describe the
original PH system in a PH form which has a constant
mass-inertia matrix in the Hamiltonian via a change of
variables. This will prove helpful when writing the model
of a flexible-joint robot. In Section 2 we also recall some
basic properties of slow-fast systems. Afterwards in Section
3 we present a model of a flexible-joint robot that has a
PH and a slow-fast structure. The corresponding reduced
subsystem is the model of a rigid robot. We conclude this
document with a simulation of a 2R flexible-joint robot
for which a controller is designed based on the reduced
models.

2. PRELIMINARIES

In this section we present the PH formalism for a class of
standard mechanical systems. Additionally, we recapitu-
late the results of Fujimoto and Sugie (2001) in terms of
generalized coordinates transformations for PH systems.
We also recall the results of Viola et al. (2007) to transform
the original system into PH form with a constant mass-
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1. INTRODUCTION

This document explores the model order reduction of a
port-Hamiltonian (PH) system based on singular pertur-
bations. The case study is a flexible-joint robot. By a series
of transformations we show that a model for a flexible-joint
robot can be written as 1) a PH system and 2) a singularly
perturbed ordinary differential equation. Afterwards we
show the effect of a composite control based on the reduced
subsystems.

In the Euler-Lagrange (EL) framework, position control
robotic systems have been thoroughly discussed in e.g.,
Canudas-de Wit et al. (1996); Murray et al. (1994); Ortega
et al. (1998); Spong et al. (2006). In such a framework,
the control design is based on selecting a suitable storage
function that ensures position control. However, the de-
sired storage function under the EL framework does not
qualify as an energy function in any physical meaningful
sense as stated in Canudas-de Wit et al. (1996); Ortega
et al. (1998).

The PH modeling framework of van der Schaft and
Maschke (2003); van der Schaft (2000) has received a
considerable amount of interest in the last decade because
of its insightful physical structure. It is well known that a
large class of (nonlinear) physical systems can be described
in the PH framework. The popularity of PH systems can
be largely accredited to its application to analysis and
control design of physical systems, e.g. Duindam et al.
(2009); Fujimoto and Sugie (2001); van der Schaft and
Maschke (2003); van der Schaft (2000). Control laws in
the PH framework are derived with a clear physical in-
terpretation via direct shaping of the closed-loop energy,
interconnection, and dissipation structure, see Duindam
et al. (2009); van der Schaft (2000).

On the other hand, model order reduction plays a crucial
role in control design as well. Being able to synthesize
controllers with a low number of variables is always more

convenient. Moreover, it is convenient as well to use reduc-
tion methods that preserve the structure of the original
system, van der Schaft and Polyuga (2009); Polyuga and
van der Schaft (2010); Scherpen and van der Schaft (2008).
One of the several model reduction methods is based on
singular perturbations, which is often applied to systems
with two or more time-scales. It is known that under cer-
tain hyperbolicity properties (see Section 2) it is possible
to obtain reduced models corresponding to systems in
distinct time scales. The behavior of the full system can
be inferred by an analysis of the reduced systems.

In the following sections we present a case study where
model order reduction, based on singular perturbation, is
applied to a PH system. In Section 2, we present a general
background in the PH framework, especially for a class of
standard mechanical systems. Furthermore, we recall the
results of Viola et al. (2007) to equivalently describe the
original PH system in a PH form which has a constant
mass-inertia matrix in the Hamiltonian via a change of
variables. This will prove helpful when writing the model
of a flexible-joint robot. In Section 2 we also recall some
basic properties of slow-fast systems. Afterwards in Section
3 we present a model of a flexible-joint robot that has a
PH and a slow-fast structure. The corresponding reduced
subsystem is the model of a rigid robot. We conclude this
document with a simulation of a 2R flexible-joint robot
for which a controller is designed based on the reduced
models.

2. PRELIMINARIES

In this section we present the PH formalism for a class of
standard mechanical systems. Additionally, we recapitu-
late the results of Fujimoto and Sugie (2001) in terms of
generalized coordinates transformations for PH systems.
We also recall the results of Viola et al. (2007) to transform
the original system into PH form with a constant mass-
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inertia matrix. Next, we include a brief introduction on
slow-fast systems.

2.1 Port-Hamiltonian Systems

The PH framework is based on the description of systems
in terms of energy variables, their interconnection struc-
ture, and power ports. PH systems include a large family
of physical nonlinear systems. The transfer of energy be-
tween the physical system and the environment is given
through energy elements, dissipation elements and power
preserving ports, see Duindam et al. (2009); van der Schaft
and Maschke (2003); van der Schaft (2000).

A class of PH system, introduced by van der Schaft and
Maschke (2003), is described by

Σ =




ẋ = [J (x)−R (x)]
∂H (x)

∂x
+ g (x)w

y = g (x)
� ∂H (x)

∂x
with states x ∈ RN , skew-symmetric interconnection
matrix J (x) ∈ RN×N , positive semi-definite damping
matrix R (x) ∈ RN×N , and Hamiltonian H (x) ∈ R. The
matrix g (x) ∈ RN×M weights the action of the control
inputs w ∈ RM on the system, and w, y ∈ RM with
M ≤ N , form a power port pair.

In this preliminary, we restrict the analysis to the a class
of standard mechanical systems with n (N = 2n) degrees
of freedom (dof),

[
q̇
ṗ

]
=

[
0n×n In×n

−In×n −D (q, p)

]
∂H (q, p)

∂q
∂H (q, p)

∂p


+

[
0n×n

G (q)

]
u

y = G (q)
� ∂H (q, p)

∂p

(1)

with generalized configuration coordinates q ∈ Rn, gener-
alized momenta p ∈ Rn, damping matrix D (q, p) ∈ Rn×n,

where D (q, p) = D (q, p)
� ≥ 0, output y ∈ Rn, input

u ∈ Rn, and the input matrix G (q) ∈ Rn×n. The Hamil-
tonian function of (1) is given by

H (q, p) =
1

2
p�M−1 (q) p+ V (q) (2)

where M (q) = M� (q) > 0 is the n×n inertia (generalized
mass) matrix, and V (q) is the potential energy.

2.2 Nonconstant to constant mass-inertia matrix

Consider the class of standard mechanical systems in (1)
with a nonconstant mass-inertia matrix M (q). The aim
of this section is to transform (1) into a PH system with
a constant mass-inertia matrix by a generalized canonical
transformation, see Fujimoto and Sugie (2001); Viola et al.
(2007).

Consider the system in (1) with nonconstant M (q), and a
coordinate transformation (q̄, p̄) = Φ (q, p) where

Φ (q, p) =

(
q − q∗

T (q)
−1

p

)
=

(
q − qd
T (q)

�
q̇

)
=

(
q̄
p̄

)
(3)

with q∗ ∈ Rn being a constant position vector, and T (q)
a lower triangular matrix such that

T (q) = T
(
Φ−1 (q̄, p̄)

)
= T̄ (q̄)

and
M (q) = T (q)T (q)

�
= T̄ (q̄) T̄ (q̄)

�

Consider now the Hamiltonian H (q, p) as in (2). Using
(3), the new function H̄ (x̄) = H

(
Φ−1 (x̄)

)
and V̄ (q̄) =

V
(
Φ−1 (q̄)

)
read as

H̄ (x̄) = H̄ (q̄, p̄) =
1

2
p̄�p̄+ V̄ (q̄)

Using this Hamiltonian and the coordinate transformation
in (3), our system under consideration in (1) can be
rewritten, as in van der Schaft and Maschke (2003), as
follows

[
˙̄q
˙̄p

]
=

[
0n×n T̄−�

−T̄−1 J̄2 − D̄

]



∂H̄ (q̄, p̄)

∂q̄

∂H̄ (q̄, p̄)

∂p̄


+

[
0n×n

Ḡ

]
v̄ (4)

ȳ = Ḡ� ∂H̄ (q̄, p̄)

∂p̄

with a new input v̄ ∈ Rn, and where the skew-symmetric
matrix J̄2 = J̄2 (q̄, p̄) takes the form

J̄2 (q̄, p̄) =
∂
(
T̄−1p̄

)
∂q̄

T̄−� − T̄−1 ∂
(
T̄−1p̄

)
∂q̄

�

(5)

with
(q, p) = Φ−1 (q̄, p̄)

together with the matrix D̄ (q̄, p̄), and the input matrix
Ḡ (q̄) given by

D̄ (q̄, p̄) = T̄ (q̄)
−1

D
(
Φ−1 (q̄, p̄)

)
T̄ (q̄)

−�

Ḡ (q̄) = T̄ (q̄)
−1

G (q̄)

In (4) and (5) we have left out the argument q̄ of T̄ (q̄) for
notational simplicity.

Remark 1. The change of coordinates described in this
section is fundamental for the result of Section 3. Through
this change of coordinates it is possible to write the model
of a flexible joint robot as a PHS and a slow-fast system.
Up to the authors’ experience, if such a transformation is
not performed, a slow-fast PHS is much more difficult to
obtain.

2.3 Slow-fast systems

By a slow-fast system (SFS) we mean a singularly per-
turbed ordinary differential equation of the form

ẋ = f(x, z, ε)

εż = g(x, z, ε),
(6)

where x ∈ Rm, z ∈ Rn and ε > 0 is a small parameter,
i.e., ε � 1, and where f and g are smooth functions. Note
that due to the presence of the parameter ε, the variable
z evolves much faster than x. Then, x and z are called the
slow and the fast variables respectively. For ε �= 0 the new
time parameter τ = t/ε is defined. As a consequence, (6) is
rewritten as

x′ = εf(x, z, ε)

z′ = g(x, z, ε),
(7)

where the prime denotes the derivative with respect to
the re-scaled time τ . Note that, for ε > 0 and g not
identically zero, the systems (6) and (7) are equivalent. A
first approach to study the dynamics of slow-fast systems
is to analyze the limit ε → 0 of (6) and (7). These limits
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correspond to a Differential Algebraic Equation (DAE)
given by

ẋ = f(x, z, 0)

0 = g(x, z, 0),
(8)

and to the layer equation

x′ = 0

z′ = g(x, z, 0).
(9)

Associated to those two limit equations, the critical man-
ifold is defined as follows.

Definition 1. The critical manifold S is defined as

S = {(x, z) ∈ Rm × Rn | g(x, z, 0) = 0} .
Note that the critical manifold S serves as the phase-space
of the DAE (8) and as the set of equilibrium points of the
layer equation (9).

If S is a set of hyperbolic points of (9), then S is called nor-
mally hyperbolic. Geometric Singular Perturbation The-
ory (GSPT), see e.g. Fenichel (1979); Kaper (1999); Jones
(1995) shows that compact, normally hyperbolic invariant
manifolds persist under C1-small perturbations. In the
present context, this means that if S0 ⊆ S is a compact
normally hyperbolic set, then, for ε > 0 sufficiently small,
there exists a normally hyperbolic invariant manifold Sε of
the slow-fast system (6) which is diffeomorphic to S0 and
lies within distance of order O(ε) from S0

1 . This implies
that the flow along Sε is approximately given by the flow
of the DAE (8), along S0.

Observe that if the matrix ∂zg(x, z, 0) is regular on S, then
by the implicit function theorem there exists a smooth
function φ such that S is given as a graph z = φ(x).
Therefore, the flow along the critical manifold S is defined
by

ẋ = f(x, φ(x), 0), (10)

which is called the reduced slow vector field.

Let x(t, x0) be the flow defined by (10). The arguments
of GSPT imply that the flow along the invariant manifold
Sε of (6) is given by x(t, x0) + O(ε). Moreover, assume
that S is a set of exponentially stable equilibrium points
of the layer equation (9). Then, there is a neighborhood D
of S where all trajectories with initial condition in D are
exponentially attracted to the invariant manifold Sε.

In the context of control systems, the hyperbolicity prop-
erty has been essential in the design of controllers based
on model reduction. This is mainly because if the system
is does not have the hyperbolicity property, it cannot be
decoupled into two (slow and fast) reduced subsystems.

Let us briefly recall the basic design methodology of
composite control, for more details see Kokotovic et al.
(1976); Kokotovic (1984); Kokotovic et al. (1986). Suppose
we now study the control system

ẋ = f(x, z, u, ε)

εż = g(x, z, u, ε).
(11)

The strategy is to consider the reduced systems

ẋ = f(x, φ(x), us, 0), (12)

1 Compactness ensures existence and uniqueness of Sε, see Verhulst
(2005).

and

z′ = g(x, z, us + uf , 0), (13)

where us = us(x) denotes the controller for the reduced
slow system (12) and uf = uf (x, z) the controller for the
fast subsystem (13). The idea is to design controllers us

and uf that: 1) make the origin of the slow subsystem (12)
exponentially stable, and 2) make the critical manifold
z = φ(x) exponentially stable. Then the controller u for
the slow-fast system (11) is designed as u = us + uf .

3. SLOW-FAST PORT-HAMILTONIAN MODEL

In this section, we derive a PH model of a flexible-joint
robot which also has a slow-fast structure (6). In this
way, the justification of designing controllers based on the
reduced models is immediate. To start, let us make the
following standard assumptions (Spong (1987); De Luca
(2014)):

• All joints are of rotatory type
• The relative displacement (deflection) at each joint is
small. Therefore we use a linear model for the springs.

• The i-th motor, which drives the i-th link, is mounted
at the (i− 1)-th link.

• The center of mass of the motors are located along the
rotation axes.

• The angular velocity of the motors is due only to their
own spinning.

We denote by q1 ∈ Rn the links’ angular positions and by
q2 ∈ Rn the motors’ angular displacement.

Energies: To obtain the Hamiltonian associated to the
n-flexible-joint robot, let us first list the involved energies:

• Link’s kinetic energy: Kl(q1, q̇1) =
1
2 q̇

T
1 Ml(q1)q̇1, where

Ml(q1) = Ml(q1)
T > 0.

• Motor’s kinetic energy: Km(q̇2) = 1
2 q̇

T
2 Iq̇2, where I =

IT > 0 denotes the motors’ inertia.
• Potential energy due to gravity:
Pg(q1) =

∑n
i=1 (Pg,li(q1) + Pg,mi

(q1)), where Pg,li and
Pg,mi

are the potential energies due to the links and the
motors, respectively.

• Potential energy due to joint stiffness: Ps(q1, q2) =
1
2 (q1−q2)

TK(q1−q2), where K ∈ Rn×n is a symmetric,
positive definite matrix of stiffness coefficients.

Now, let us assume that the stiffness coefficient is much
higher than any other parameter of the system. This is
we let K be defined as K = 1/εIn, where In denotes
the n-dimensional identity matrix. Next, as it is custom-
ary, e.g. Spong (1987), let us define new coordinates as
(q1, εz) = (q1, q1 − q2), and denote by qε ∈ R2n the gen-
eralized coordinates qε = (q1, z). Then the corresponding
Hamiltonian Hε = Hε (qε, q̇ε) can be written as

Hε(qε, q̇ε) =
1

2
q̇Tε Mε(qε)q̇ε + Vε(qε),

where Mε (qε) ∈ R2n×2n and Vε(qε) ∈ R read as

Mε(qε) =

[
Ml(q1) + I −εI

−εI ε2I

]
, Vε(qε) = Pg(q1) +

1

2
εzT z

Remark 2. Note that H0 = limε→0 Hε is precisely the
Hamiltonian function of a rigid robot.
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correspond to a Differential Algebraic Equation (DAE)
given by

ẋ = f(x, z, 0)

0 = g(x, z, 0),
(8)

and to the layer equation

x′ = 0

z′ = g(x, z, 0).
(9)

Associated to those two limit equations, the critical man-
ifold is defined as follows.

Definition 1. The critical manifold S is defined as

S = {(x, z) ∈ Rm × Rn | g(x, z, 0) = 0} .
Note that the critical manifold S serves as the phase-space
of the DAE (8) and as the set of equilibrium points of the
layer equation (9).

If S is a set of hyperbolic points of (9), then S is called nor-
mally hyperbolic. Geometric Singular Perturbation The-
ory (GSPT), see e.g. Fenichel (1979); Kaper (1999); Jones
(1995) shows that compact, normally hyperbolic invariant
manifolds persist under C1-small perturbations. In the
present context, this means that if S0 ⊆ S is a compact
normally hyperbolic set, then, for ε > 0 sufficiently small,
there exists a normally hyperbolic invariant manifold Sε of
the slow-fast system (6) which is diffeomorphic to S0 and
lies within distance of order O(ε) from S0

1 . This implies
that the flow along Sε is approximately given by the flow
of the DAE (8), along S0.

Observe that if the matrix ∂zg(x, z, 0) is regular on S, then
by the implicit function theorem there exists a smooth
function φ such that S is given as a graph z = φ(x).
Therefore, the flow along the critical manifold S is defined
by

ẋ = f(x, φ(x), 0), (10)

which is called the reduced slow vector field.

Let x(t, x0) be the flow defined by (10). The arguments
of GSPT imply that the flow along the invariant manifold
Sε of (6) is given by x(t, x0) + O(ε). Moreover, assume
that S is a set of exponentially stable equilibrium points
of the layer equation (9). Then, there is a neighborhood D
of S where all trajectories with initial condition in D are
exponentially attracted to the invariant manifold Sε.

In the context of control systems, the hyperbolicity prop-
erty has been essential in the design of controllers based
on model reduction. This is mainly because if the system
is does not have the hyperbolicity property, it cannot be
decoupled into two (slow and fast) reduced subsystems.

Let us briefly recall the basic design methodology of
composite control, for more details see Kokotovic et al.
(1976); Kokotovic (1984); Kokotovic et al. (1986). Suppose
we now study the control system

ẋ = f(x, z, u, ε)

εż = g(x, z, u, ε).
(11)

The strategy is to consider the reduced systems

ẋ = f(x, φ(x), us, 0), (12)

1 Compactness ensures existence and uniqueness of Sε, see Verhulst
(2005).

and

z′ = g(x, z, us + uf , 0), (13)

where us = us(x) denotes the controller for the reduced
slow system (12) and uf = uf (x, z) the controller for the
fast subsystem (13). The idea is to design controllers us

and uf that: 1) make the origin of the slow subsystem (12)
exponentially stable, and 2) make the critical manifold
z = φ(x) exponentially stable. Then the controller u for
the slow-fast system (11) is designed as u = us + uf .

3. SLOW-FAST PORT-HAMILTONIAN MODEL

In this section, we derive a PH model of a flexible-joint
robot which also has a slow-fast structure (6). In this
way, the justification of designing controllers based on the
reduced models is immediate. To start, let us make the
following standard assumptions (Spong (1987); De Luca
(2014)):

• All joints are of rotatory type
• The relative displacement (deflection) at each joint is
small. Therefore we use a linear model for the springs.

• The i-th motor, which drives the i-th link, is mounted
at the (i− 1)-th link.

• The center of mass of the motors are located along the
rotation axes.

• The angular velocity of the motors is due only to their
own spinning.

We denote by q1 ∈ Rn the links’ angular positions and by
q2 ∈ Rn the motors’ angular displacement.

Energies: To obtain the Hamiltonian associated to the
n-flexible-joint robot, let us first list the involved energies:

• Link’s kinetic energy: Kl(q1, q̇1) =
1
2 q̇

T
1 Ml(q1)q̇1, where

Ml(q1) = Ml(q1)
T > 0.

• Motor’s kinetic energy: Km(q̇2) = 1
2 q̇

T
2 Iq̇2, where I =

IT > 0 denotes the motors’ inertia.
• Potential energy due to gravity:
Pg(q1) =

∑n
i=1 (Pg,li(q1) + Pg,mi

(q1)), where Pg,li and
Pg,mi

are the potential energies due to the links and the
motors, respectively.

• Potential energy due to joint stiffness: Ps(q1, q2) =
1
2 (q1−q2)

TK(q1−q2), where K ∈ Rn×n is a symmetric,
positive definite matrix of stiffness coefficients.

Now, let us assume that the stiffness coefficient is much
higher than any other parameter of the system. This is
we let K be defined as K = 1/εIn, where In denotes
the n-dimensional identity matrix. Next, as it is custom-
ary, e.g. Spong (1987), let us define new coordinates as
(q1, εz) = (q1, q1 − q2), and denote by qε ∈ R2n the gen-
eralized coordinates qε = (q1, z). Then the corresponding
Hamiltonian Hε = Hε (qε, q̇ε) can be written as

Hε(qε, q̇ε) =
1

2
q̇Tε Mε(qε)q̇ε + Vε(qε),

where Mε (qε) ∈ R2n×2n and Vε(qε) ∈ R read as

Mε(qε) =

[
Ml(q1) + I −εI

−εI ε2I

]
, Vε(qε) = Pg(q1) +

1

2
εzT z

Remark 2. Note that H0 = limε→0 Hε is precisely the
Hamiltonian function of a rigid robot.
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Defining the generalized momenta as pε = Mε(qε)q̇ε, it is
straightforward to rewrite the Hamiltonian asHε(qε, pε) =
1
2p

T
ε Mε(qε)

−1pε + Vε(qε).

Let us now perform the canonical transformation as briefly
exposed in Section 2.2. For this, a change of coordinates
(q̄ε, p̄ε) = Φ(qε, pε) is defined by[

q̄ε
p̄ε

]
=

[
qε

T̄ε(q̄ε)
T ˙̄qε

]
, (14)

where the matrix T̄ε(q̄ε) ∈ R2n×2n is lower triangular and
is defined by Mε = T̄ε(q̄ε)T̄ε(q̄ε)

T . Under this change of
coordinates the Hamiltonian is rewritten as H̄ε =

1
2 p̄

T
ε p̄ε+

V (q̄ε), and the port-Hamiltonian equations have the form
(4), with (M, T̄ ) = (Mε, T̄ε). In order to show that for a
flexible-joint robot, the port-Hamiltonian equation takes
the form of a slow-fast system we need to carefully study
each term of (4). Let

T̄ε(q̄ε) =

[
t1 0
t2 t3

]
,

where T̄ε(q̄ε) ∈ R2n×2n, and for simplicity of notation we
shall omit the dependence of ti on q̄ε.

Remark 3. We assume that t1 is known because of the
relation t1t

T
1 = Ml(q1)+I, which comes from a rigid robot

model.

Notation. To save space, let us make the following defi-
nitions.
• First, let q̄ε = (q̄1, q̄2) = (q1, z) ∈ R2n and p̄ε =
(p̄1, p̄2) ∈ R2n.

• T1 = T1(q̄) ∈ Rn×n is defined by T1 = t1t
T
1 .

• t4 = t4(q̄) ∈ Rn×n is defined by t4t
T
4 = I −

I(t1t
T
1 )

−1I = I−IT−1
1 I, which we assume to be known

since t1 is known. It is a matter of simple linear algebra
to show that t4 exists and is unique.

• α = α(q̄) ∈ Rn×n is defined by α = t−1
4 I(t1t

T
1 )

−1.

• β = β(q̄, p̄) ∈ Rn×n is defined by β = ∂
∂q̄1

(t−1
1 p̄1).

• γ = γ(q̄, p̄) ∈ Rn×n is defined by γ = ∂
∂q̄1

(αp̄1).

It follows from careful computations that

T̄−1
ε =



t−1
1 0

α
1

ε
t−1
4


 , J̄2,ε(q̄ε, p̄ε) =

[
j1 j2

−jT2 j3

]
, (15)

where
j1 = βt−T

1 − t−1
1 βT ,

j2 = −βαT − t−1
1 γT

︸ ︷︷ ︸
=:j21

−1

ε
t−1
1

(
∂

∂q̄1
(t−1

4 p̄2)

)T

︸ ︷︷ ︸
=:j22

= j21 −
1

ε
j22

j3 = −γαT + αγT

︸ ︷︷ ︸
=:j31

−

1

ε




∂

∂q̄1
(t−1

4 p̄2)α
T − α

(
∂

∂q̄1
(t−1

4 p̄2)

)T

︸ ︷︷ ︸
=:j32




= j31 −
1

ε
j32.

(16)

Remark 4. Note that j1 = −jT1 and j3 = −jT3 and
therefore J̄2,ε is indeed skew-symmetric.

Proposition 1. Under the coordinates (q̄ε, p̄ε) introduced
above, a flexible-joint robot has the PH equations




˙̄q1

˙̄q2

˙̄p1

˙̄p2



=




0 0 t−T
1 αT

0 0 0
t−T
4

ε

−t−1
1 0 j1 j21 −

j22
ε

−αT − t−1
4

ε
−j21 +

j22
ε

j31 −
j32
ε







∂H̄ε

∂q̄1
∂H̄ε

∂q̄2
∂H̄ε

∂p̄1
∂H̄ε

∂p̄2




+



0n×n

0n×n

Ḡ1

Ḡ2


 v̄,

(17)

with Gi = Gi(q̄ε, p̄ε, ε) ∈ Rn×n, and where for no-
tational simplicity we have left out the arguments of
H̄ε, t1, t4, j1, j21, j22, j31 and j32. Moreover, the corre-
sponding reduced slow subsystem has the dynamics of a
rigid-joint robot in the PH framework.

Proof. The PH equations are obtained by substituting
(15) and (16) into (4). Regarding the reduced systems,
note that we can rewrite the PH equations as

˙̄q1 =t−1 T p̄1 + αT p̄2

ε ˙̄q2 =t−T
4 p̄2

˙̄p1 =− t−1
1

∂H̄ε

∂q̄1
+ j1p̄1 +

(
j21 −

j22
ε

)
p̄2+

g1(q̄ε, p̄ε)v̄

ε ˙̄p2 =− εαT ∂H̄

∂q̄1
− t−1

4

∂H̄

∂q̄2
− (εj21 − j22) p̄1

+ (εj31 − j32)p̄2 + εg2(q̄ε, p̄ε)v̄.

(18)

Taking now the limit ε → 0 of (18), we find the constraints

0 = p̄2

0 = −t−1
4

∂H0

∂q̄2
+ j22p̄1 + j32p̄2.

Furthermore, note that ∂H0

∂q̄2
= εz, j22 ∈ O(ε), limε→0 qε =

(q1, 0), and limε→0 pε = ((Ml(q1) + I)q̇1, 0). Therefore the
reduced system is simply the rigid PH model

[
q̇1

ṗ1

]
=

[
0 t−T

1

−t−1
1 j1

]



∂H0

∂q1
∂H0

∂p1


+

[
0n×n

g1(q1, p1)

]
us, (19)

where us stands for the controller for the slow subsystem
(12).

Remark 5. The PHS (19) is the PH model of a rigid robot,
which physically means that the stiffness coefficient of the
springs, of the flexible-joint robot, is infinity.

Since (17) has the structure of a slow-fast system ((with
(q̄2, p̄2) being fast variables and (q̄1, p̄1) being the slow
variables), we also find that the layer equation reads as
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[
q̄′2

p̄′2

]
=

[
0 t−T

4

−t−1
4 j32

]


∂H̄

∂q̄2
∂H̄

∂p̄2


+

[
0n×n

g2(q̄1, p̄1, q̄2, p̄2)

]
uf ,

(20)

where now (q̄1, p̄1) are fixed constants, and uf stands for
the controller of the layer equation (13). Note that the
layer equation has also a PH structure.

With the previous exposition we have found reduced
systems for a flexible-joint robot whose model is written
in the PH framework. For control purposes, and following
e.g., Kokotovic et al. (1986), it is possible to design
controllers for a flexible-link robot from those for the rigid-
robot and the layer equation.

4. NUMERICAL EXAMPLE

To illustrate our previous exposition, we present in this
section a simulation of a composite control of a 2R
planar flexible-joint manipulator. Joint flexibility can be
attributed to several physical factors, like motor-to-link
coupling, harmonic drives, etc Spong (1987); De Luca
(2014). For simplicity, we assume that the robot acts on
the horizontal plane and thus, gravitational effects are
neglected. A schematic of the 2R flexible-joint robot is
shown in Figure 1.

x

y

q12

q22

q11

q21

Fig. 1. Schematic of a 2R planar, flexible-joint robot.

Let q1 = (q11 , q
2
1) and q2 = (q12 , q

2
2) be the coordinates

of the links and of the motors, respectively. Each link
has length li, mass mi, inertia Ili and distance to the
center of mass ri; while each motor has associated inertia
Ii, i = 1, 2. We assume that the matrix I ∈ R2×2, such
that I = diag {I1, I2}, and the matrix K ∈ R2×2 is also
diagonal of the form K = diag {1/ε, 1/ε}, thus fitting in the
exposition above. Let us define the following constants

a1 = m1r
2
1 +m2l

2
1 + Il1

a2 = m2r
2
2 + Il2

b = m2l1r2.

Then, the matrix Ml(q1) ∈ R2×2 reads as

Ml(q1) =

[
a1 + a2 + 2b cos q21 a2 + b cos q21

a2 + b cos q21 a2

]
.

The task is to make the links (q11 , q
2
1) follow a desired tra-

jectory q̄1,d = q1,d = (q11,d, q
2
1,d) given by q11,d = q21,d = 0.1+

0.05 sin(t). To achieve such a task, we implement sepa-
rate controllers following the design principle of Kokotovic

et al. (1986). This is: one controller is designed for the rigid
robot (the slow subsystem (19)) independently of the fast
subsystem, and another controller is designed for the fast
subsystem, where now the slow variables are taken as fixed
parameters. These two controllers shall guarantee stability
in their own domain (slow and fast reduced subsystems
respectively). Then, the controller for the flexible-joint
robot is defined as the sum of both reduced controllers.
The stability of the flexible system is guaranteed by GSPT
arguments, recall Section 2.3 and see Kokotovic (1984);
Fenichel (1979); Jones (1995); Kaper (1999).

The controller synthesis for the rigid robot, which has a
PH equation of the form (19) is taken from Dirksz and
Scherpen (2013) and reads as

us =Mlq̈1,d +
∂

∂q1
(Mlq̇1,d)q̇1,d −

1

2

∂

∂q1
(q̇T1,dMlq̇1,d)

−Kp(q1 − q1,d)−Kc(q1 − q1,d − q1,c),
(21)

where qc is the controller state and its dynamics are given
by

q̇1,c = K−1
d Kc(q1 − q1,d − q1,c),

and Kc, Kd and Kp are positive definite matrices, see
Dirksz and Scherpen (2013) for more details.

Remark 6. Eventhough (19) is not exactly the same model
as considered in Dirksz and Scherpen (2013), both are, up
to the change of coordinates of Section 2.2, a standard
mechanical system. Moreover, note that in the change of
coordinates (14) q̄ε = qε.

The controller us applied to the rigid robot has the
performance shown in Figure 2a.

For the fast subsystem, which has the form (20), we employ
the same controller design idea of Dirksz and Scherpen
(2013). This is due to the fact that the layer subsystem is
also a PH system, just now we have a desired trajectory
q̄2,d = zd = (z1d, z

2
d) = (0, 0). The reason is that we want

to follow the desired trajectory with a zero deflection, i.e.
z = q1 − q2 = 0. This yields a controller of the form

uf = −Lpz − Lc(z − zc), (22)

with the controller dynamics

żc = L−1
d Lc(z − zc),

where Ld, Lp and Lc are positive definite matrices.

Remark 7. Note that the controllers us and uf of (21) and
(22), respectively, only use position measurements.

By combining these two controllers as u = us + uf , and
implementing them into the flexible-joint robot whose
model is now of the form (17), we get the performance
shown in Figures 2b and 2c. From these we see that
the robot closely follows the desired trajectories after one
second. Finally, comparing Figures 2a and 2b we note
that the difference between the rigid and the flexible robot
behaviors is barely noticeable.

5. CONCLUSIONS

In this document we have explored the methodology of
model order reduction based on singular perturbations
for a PH system. In order to do so, we have written the
PH model of a flexible-joint robot in a slow-fast format.
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where now (q̄1, p̄1) are fixed constants, and uf stands for
the controller of the layer equation (13). Note that the
layer equation has also a PH structure.
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(2014). For simplicity, we assume that the robot acts on
the horizontal plane and thus, gravitational effects are
neglected. A schematic of the 2R flexible-joint robot is
shown in Figure 1.
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żc = L−1
d Lc(z − zc),

where Ld, Lp and Lc are positive definite matrices.

Remark 7. Note that the controllers us and uf of (21) and
(22), respectively, only use position measurements.

By combining these two controllers as u = us + uf , and
implementing them into the flexible-joint robot whose
model is now of the form (17), we get the performance
shown in Figures 2b and 2c. From these we see that
the robot closely follows the desired trajectories after one
second. Finally, comparing Figures 2a and 2b we note
that the difference between the rigid and the flexible robot
behaviors is barely noticeable.

5. CONCLUSIONS

In this document we have explored the methodology of
model order reduction based on singular perturbations
for a PH system. In order to do so, we have written the
PH model of a flexible-joint robot in a slow-fast format.

IFAC NOLCOS 2016
August 23-25, 2016. Monterey, California, USA

848

0 0.5 1

t

-0.15

-0.1

-0.05

0

0.05

q1
1
− q1

1,d

q2
1
− q2

1,d

(a)

0 0.5 1

t

-0.15

-0.1

-0.05

0

0.05

q1
1
− q1

1,d

q2
1
− q2

1,d

q1
1
− q1

2

q2
1
− q2

2

(b)

0 0.5 1

t

-10

-5

0

5
×10

-4

(q1
1
− q1

2
)

(q2
1
− q2

2
)

(c)

Fig. 2. (a) The trajectory tracking error for a rigid 2R robot. (b) The trajectory tracking error for a 2R flexible-joint
robot. For this simulation ε = 0.01 or K = diag {100, 100}. (c) Zoomed-in deflection.

Then, by inspecting the structure of the system we have
shown, as it is to be expected, that the corresponding
slow subsystem is the PH model of a rigid-joint robot.
Consequently, as it happens in the EL framework, the
design of controllers from the reduced subsystems is jus-
tified. To exemplify our exposition, we have implemented
a controller with only position measurements designed in
Dirksz and Scherpen (2013). Our simulations show a good
performance of the controllers. However, we have used
controllers designed only on the reduced subsystems. The
performance of the closed-loop systems can be improved
by taking higher order terms of ε when designing the
controller. In particular, and as a natural extension of this
work, a careful study of the fast subsystem is required
in order to rigorously prove exponential stability under
composite controllers within the PH framework. Moreover,
as future research, visco-elastic joints and elastic links may
be incorporated to the PH model.
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