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Generalized Brillinger-Like Transforms
Anatoli Torokhti and Pablo Soto-Quiros

Abstract—We propose novel transforms of stochastic vectors,
called the generalized Brillinger transforms (GBT1 and GBT2),
which are generalizations of the Brillinger transform (BT). The
GBT1 extends the BT to the cases when the covariance matrix
and the weighting matrix are singular, and moreover, the weight-
ing matrix is not necessarily symmetric. We show that the GBT1
may computationally be preferable over another related optimal
technique, the generic Karhunen–Loève transform (GKLT). The
GBT2 generalizes the GBT1 to provide, under the condition we
impose, better associated accuracy than that of the GBT1. It is
achieved because of the increase in a number of parameters to
optimize compared to that in the GBT1.

Index Terms—Brillinger transform (BT), data compression,
filtering.

I. INTRODUCTION

Motivation: Recently, the transform of stochastic vectors
proposed by Brillinger [1, pp. 368–69, 457] has received con-
siderable attention in signal processing problems (see, e.g.,
[2]–[7]) as an effective tool for data compression and filter-
ing. The Brillinger transform (BT) F is represented in terms
of two matrices, F = AC, where C is designated for compres-
sion and A for decompression (they are called “compressor”
and “decompressor,” respectively). We wish to extend the BT
to more efficient transforms.

Contribution and novelty: The contribution of this work is
threefold. First, in Section II, we extend the BT to a generalized
first-order BT (GBT1) which is applicable to the cases when
the covariance matrix and the weighting matrix are singular,
and moreover, the weighting matrix is not necessarily sym-
metric. The proposed GBT1 is given in terms of pseudoinverse
matrices and therefore, it always exists, i.e., it is applicable
to cases where the BT is not. This is because BT performs
only under the assumption that the covariance matrix and
weighting matrix are invertible, and that the weighting matrix
is symmetric. These conditions might be restrictive [8] in
problems where the BT is applied. We note that the extension
of the BT to the GBT1 is not straightforward and requires a
new justification based on Facts 1–3 in Section II-A.

Second, although the GBT1 provides the best decompression
accuracy, for the same compression ratio, among all trans-
forms of the form F = AC it may happen that the accuracy

Manuscript received February 08, 2016; revised April 12, 2016; accepted
April 18, 2016. Date of publication April 20, 2016; date of current version May
05, 2016. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Marco Lops.

A. Torokhti is with the Centre for Industrial and Applied Mathematics,
University of South Australia, Adelaide, S.A. 5095, Australia (e-mail: anatoli.
torokhti@unisa.edu.au).

P. Soto-Quiros is with the Centre for Industrial and Applied Mathematics,
University of South Australia, Adelaide, S.A. 5095, Australia, and also with the
Instituto Tecnologico de Costa Rica, Cartago 30101, Costa Rica (e-mail: juan.
soto-quiros@mymail.unisa.edu.au).

Color versions of one or more of the figures in this letter are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LSP.2016.2556714

is still not satisfactory. In Section III, we propose and justify a
new transform called the generalized second-order BT (GBT2)
which provides, under the condition we impose, better associ-
ated accuracy than that of the GBT1.

Third, we show that the GBT1 requires a lower computa-
tional load than other related technique, the generic Karhunen–
Loève transform (GKLT) [8]–[10]. This issue is elaborated in
Section III. Such an analysis provides a better understanding of
the two well-known data compression techniques.

A. Truncated SVD

Let the SVD of matrix M ∈ R
m×n be given by M =

UMΣMV T
M , where UM = [u1 u2 . . . um] ∈ R

m×m, VM =
[v1 v2 . . . vn] ∈ R

n×n are unitary matrices, and ΣM =
diag(σ1(M), . . . , σmin(m,n)(M)) ∈ R

m×n is a generalized
diagonal matrix, with the singular values σ1(M) ≥ σ2(M) ≥
· · · ≥ 0 on the main diagonal. Let

PM,L =

rank (M)∑

k=1

uku
T
k ∈ R

m×m, PM,R =

rank (M)∑

j=1

vjv
T
j ∈ R

n×n

be the orthogonal projections on the range of M and MT ,
respectively, and let

[M ]k =
k∑

i=1

σi(M)uiv
T
i ∈ R

m×n (1)

for k = 1, . . . , rank (M), be the truncated SVD of M . For
k > rank (M), we define [M ]k = M (= Mrank (M)). For 1 ≤
k < rank (M), the matrix Mk is uniquely defined if and only if
σk(M) > σk+1(M).

B. Special Notation

Let us write (Ω,Σ, μ) for a probability space.1 We denote
by y = (y1, . . . ,ym)T ∈ L2(Ω,Rm) the signal of interest2 (a
source signal to be estimated) and by x = (x1, . . . ,xn)

T ∈
L2(Ω,Rn) the observed signal where yj ,xk ∈ L2(Ω,R). Let
us write E[‖x‖22] =

∫
Ω
‖x(ω)‖22dμ(ω), where ‖x(ω)‖2 is the

Euclidean norm of x(ω) ∈ R
m. We assume that means E[y]

and E[x] are known. Therefore, without loss of general-
ity, we will assume henceforth that y and x have zero
means. Then, Eyx = E[yxT ] = {eij}m,n

i,j=1 ∈ R
m×n, where

eij =
∫
Ω
yi(ω)xj(ω)dμ(ω).

Furthermore, M† and M1/2 denote the Moore–Penrose
pseudoinverse matrix and a matrix square root, respectively, for
matrix M . For the covariance matrix Exx, we denote E

1/2†
xx :=

(E
1/2
xx )†. E1/2†

xx is unique since Exx is positive semidefinite.

1Ω = {ω} is the set of outcomes, Σ a σ-field of measurable subsets of Ω,
μ : Σ[0, 1] an associated probability measure on Σ with μ(Ω) = 1.

2L2(Ω,Rm) is the space of square-integrable functions defined on Ω with
values in Rm, i.e., such that

∫
Ω ‖x(ω)‖22dμ(ω) < ∞.
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C. Review of the BT

Let k ≤ min{m,n}, Γ ∈ R
m×m be a symmetric invertible

weighting matrix, A ∈ R
m×k and C ∈ R

k×n be matrices of
a decompressor and compressor, respectively. The BT of x is
represented by matrices A and C that solve

min
A,C

E

[
‖Γ (y −ACx)‖22

]
. (2)

Weighting matrix Γ is used, based on a priori information, to
place a greater importance on some particular entries of the
observed data (in this regard, see, e.g., [11]–[13]).3 Denote
T = ΓEyxE

−1
xxExyΓ and suppose that the SVD of T is given

by T = UTΣTU
T
T . Under the assumption that Exx is invertible,

the BT in [1] is given by

C = UT
T,kΓEyxE

−1
xx and A = Γ−1UT,k (3)

where UT,k is formed by the first k columns of UT .

II. GENERALIZED FIRST-ORDER BT (GBT1)

A. Derivation and Justification of GBT1

Here, we consider the generalized BT (GBT1) which is an
extension of the BT to the case in which Exx and Γ are not
invertible, and moreover, Γ is not necessarily symmetric.

To this end, denote Tx = ΓEyxE
†
xxExyΓ

T , UTx
ΣTx

UT
Tx

=
Tx is the SVD of Tx, ML = I + (I − PΓ,R)S and MR =
I +R(I − P

E
1/2
xx ,L

), where S and R are arbitrary matrices.
Furthermore, ‖ · ‖ denotes the Frobenius matrix norm.

Theorem 1: The GBT1 is represented by matrices AGB ∈
R

m×k and CGB ∈ R
k×n such that

AGB = MLΓ
†UTx,k and CGB = UT

Tx,kΓEyxE
†
xxMR.

(4)
The minimal norm GBT1 is given by AGB = Γ †UTx,k and
CGB = UT

Tx,k
ΓEyxE

†
xx. For the fixed compression ratio c =

k
min{m,n} , the associated error is given by

εGBT1 = min
A,C

E
[‖Γ (y −ACx)‖22

]
= ‖(ΓEyyΓ

T )1/2‖2 − α1 (5)

where α1 =
∑rx

j=1 σj(Tx), rx = k if k ≤ rank (Tx) and rx =

rank (Tx) if k > rank (Tx).
Remark 1: If E†

xx = E−1
xx , and matrix Γ is symmetric and

invertible then (5) represents the error associated with the BT.
The proof of Theorem 1 is based on the following facts.
Fact 1: Let UMΣMV T

M = M be the SVD of M ∈ R
m×n,

rank (M) = r, k < r, UM,k = [u1 u2 . . . uk]. Then,

[M ]k = UM,kU
T
M,kM. (6)

For k ≥ r, [M ]k = [M ]r = M .
Proof: For convenience, we denote Uk = UM,k, Σk =

diag(σ1, . . . , σk), σj = σj(M), j = 1, . . . , k, and Vk = [v1,
. . . , vk]. Furthermore, let Ok,r be k × r zero matrix and let

Ur−k = [uk+1, . . . , ur], Vr−k = [vk+1, . . . , vr]

Σr−k : = diag(σk+1, . . . , σr) and Ok,r−k ∈ R
k×(r−k).

3It is customary to choose small weights where the errors associated with
particular entries of observed data are expected to be large, and vice versa.

Then, for Ik ∈ R
k×k, (1) implies

[M ]k = Uk[Ik Ok,r−k]

[
Σk Ok,r−k

O
T
k,r−k Σr−k

]
V T
r

= UkU
T
k [Uk Ur−k]ΣrV

T
r = UkU

T
k M. �

We write N (M) for the null space of matrix M . Fact 2: Let
P ∈ R

n×m and Q ∈ R
n×m. Then,

N (PT ) ⊆ N (QT ) ⇒ PP †Q = Q. (7)

Proof: By Lemma 23 in [8, p. 167]

N (PT ) ⊆ N (QT ) ⇒ QT (P †)TPT = QT .

Then, (7) follows. �
Fact 3: The following equality holds:

ΓΓ †
[
ΓEyxE

1/2
xx

†]
k
=

[
ΓEyxE

1/2
xx

†]
k
. (8)

Proof: We have N (ΓT ) ⊆ N
(
E

1/2
xx

†
ET

yxΓ
T

)
and

N
(
E

1/2
xx

†
ET

yxΓ
T

)
⊆N

(
[E

1/2
xx

†
ET

yxΓ
T ]k

)
. Thus, N (ΓT ) ⊆

N
(
[E

1/2
xx

†
ET

yxΓ
T ]k

)
. Then, (7) implies (8). �

Proof of Theorem 1: Let us denote w = Γy. Recall
that E

[‖w‖22
]
=

∫
Ω

tr{w(ω)w(ω)T }dμ(ω) = tr(Eww) (since
‖M‖2 = tr(MMT ); see, e.g., [8, p. 167]). Then, for F1 = AC

E
[‖Γ (y −ACx)‖22

]
= tr{Eww − EwxF

T
1 ΓT − ΓF1Exw + ΓF1ExxF

T
1 ΓT }

=
∥∥∥E1/2

ww

∥∥∥2 − ∥∥∥EwxE
1/2†
xx

∥∥∥2
+
∥∥∥EwxE

1/2
xx

† − ΓF1E
1/2
xx

∥∥∥2 . (9)

The latter is true because EwxExxE
†
xx = Ewx (see [8, p. 168])

and E†
xxE

1/2
xx = E

1/2†
xx . Denote by R(m,n, k) the set of all

m× n matrices of rank at most k. It has been shown in [14]
and [15] that the solution to problem

min
F1∈R(m,n,k)

∥∥∥EwxE
1/2
xx

† − ΓF1E
1/2
xx

∥∥∥2 (10)

is given by

F1 = MLΓ
†
[
ΓEyxE

1/2
xx

†]
k
E1/2

xx

†
MR (11)

(see Remark 2 below), where by Fact 1[
ΓEyxE

1/2
xx

†]
k
= UT,kU

T
T,kΓEyxE

1/2
xx

†
. (12)

If we denote F1 = FGB1 = AGBCGB then (11) and (12) imply
(4). Furthermore, if in (9), F1 is replaced with FGB1 then

ΓF1E
1/2
xx (13)

= ΓMLΓ
†
[
ΓEyxE

1/2
xx

†]
k
E1/2

xx

†
MRE

1/2
xx

where ΓMLΓ
† = ΓΓ † and E

1/2†
xx MRE

1/2
xx = E

1/2
xx

†
E

1/2
xx .

Therefore, (13) implies

ΓTE1/2
xx = ΓΓ †

[
ΓEyxE

1/2
xx

†]
k
E1/2

xx

†
E1/2

xx .
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Here, on the basis of Lemma 42 in [8, p. 311][
ΓEyxE

1/2
xx

†]
k
E1/2

xx

†
E1/2

xx =
[
ΓEyxE

1/2
xx

†]
k

and (8) is also true. Thus,

ΓMLΓ
†
[
ΓEyxE

1/2
xx

†]
k
E1/2

xx

†
MRE

1/2
xx

=
[
ΓEyxE

1/2
xx

†]
k
. (14)

Then, for F1 = FGB1 = AGBCGB and AGB, CGB given by (4),
the last term in (9) is written as∥∥∥ΓEyxE

1/2
xx

† − ΓFGB1E
1/2
xx

∥∥∥2
=

∥∥∥ΓEyxE
1/2
xx

† −
[
ΓEyxE

1/2
xx

†]
k

∥∥∥2 =

rank (Tx)∑
j=k+1

σj(Tx)

since ‖ΓEyxE
1/2
xx

†‖2 =
∑rank (Tx)

j=1 σj(ΓEyxE
1/2
xx

†
). There-

fore, the error representation in (5) follows. Interestingly, (5)
does not depend on S and R, i.e., any their choice (e.g., S =
Om,m, R = On,n) results in the same associated error. �

Remark 2: In [14] and [15], the proof of (11) is based on

‖Λ− ΓF1G‖ = ‖Λ̃− Z‖, where Λ = EwxE
1/2
xx

†
, G = E

1/2
xx ,

Λ̃ = UT
Γ ΛVG, Z = ΣΓ F̃1ΣGF̃1 = V T

Γ F1UG.
Example 1: Let Eyx, Exx be formed by 6× 3 sample matri-

ces Y and X = Y + 0.1Θ, where Y has uniformly distributed
entries and Θ has normally distributed entries with mean 0 and
variance 1. The entries are chosen randomly. Then, Eyx and
Exx are singular and the BT is not applicable. The GBT1 is
applicable and, for k = 2 and diagonal Γ with random entries
within (0, 1), the associated error is 0.02.

B. Numerical Load. Comparison With the GKLT

In a number of applied problems, dimensions m,n of asso-
ciated covariance matrices are large. For instance, in the DNA
array analysis [16], [17], m = O(104). In this case, the associ-
ated numerical load needed to compute the covariance matrices
increases significantly. Therefore, a method which requires a
lower associated numerical load is, of course, more prefer-
able. In addition to the advantages of the GBT1 mentioned in
Section I, another advantage is that the computational load for
the GBT1 is less than that for the GKLT [8]. The GKLT is the
optimal technique related to GBT1 and is represented here by
(11). The computational schemes for the GBT1 and GKLT are
different. In particular, the GBT1 requires to compute UTx,k

from the eigendecomposition of the m×m symmetric matrix
Tx, whereas the GKLT requires to compute the whole SVD of

the nonsymmetric m× n matrix ΓEyxE
1/2
xx

†
.

Table I provides estimates of the number of flops required

to compute UTx,k, for the GBT1, and the SVD of ΓEyxE
1/2
xx

†
,

for the GKLT, by the Golub–Reinsch SVD method and the R-
bidiagonalization method (R-SVD), for m = n, as it given in
[18, p. 254].

The GBT1 computational load (LGBT1) consists of com-
putation of matrices E†

xx and UTx,k, and matrix products
EyxE

†
xx, Tx, and AGBCGB. The GKTL computational load

(LGKLT) consists of computation of matrix E
1/2
xx

†
, matrix

TABLE I
ESTIMATES OF FLOP NUMBERS

Fig. 1. Time versus matrix dimension m used to execute the GBT1 (dashed
line) and GKLT (solid line), for (a) s = 2m and (b) s = m/2.

product ΓEyxE
1/2
xx

†
, the SVD of ΓEyxE

1/2
xx

†
, and matrix

product Γ †
[
ΓEyxE

1/2
xx

†
]
k

E
1/2
xx

†
. Matrix product of m× n

and n× p requires approximately 2mnp flops, for large n. On
this basis, for m = n, Γ = I , S = Om,m, R = On,n, and UTx

and the SVD of EyxE
1/2
xx

†
evaluated by the R-SVD

LGBT1 = 35m3 + 2m2k and LGKLT = 52m3.

For UTx
and the SVD of EyxE

1/2
xx

†
evaluated by the Golub–

Relisch SVD

LGBT1 = 34m3 + 2m2k and LGKLT = 47m3.

Of course, LGBT1 and LGKLT are evaluated approximately. A
difference between LGBT1 and LGKLT increases if the covariance
matrices are singular. Example (2) illustrates it.

Example 2: We simulate y and x by matrices Y ∈ R
m×s

and X ∈ R
m×s as in Example (1) but with different m, s.

The diagrams in Fig. 1(a) and (b) represent time versus
matrix dimension m used to execute the GBT1 and GKLT, for
c = m/4. For s = m/2, the covariance matrices are singular.
Fig. 1 illustrates the GBT1 advantage considered above, i.e.,
that the GBT1 is faster than the GKLT.

III. GENERALIZED SECOND-ORDER BT (GBT2)

Now, we consider the generalized second-order BT (GBT2)
in the form F (x) = DC1x+DC2v that contains three
matrices to optimize, D, C1, and C2, i.e., one matrix more
than the GBT1. Here, v is an “auxiliary” signal used to further
optimize the transform. We show that, because of the increase
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in a number of parameters to optimize, the GBT2 may provide
better accuracy than that of the GBT1.

A. Determination of D, C1, and C2

Optimal D ∈ R
m×k, C1 ∈ R

k×n, and C2 ∈ R
k×n solve

min
D,C1,C2

E

[
‖Γ (y −D[C1x+ C2v])‖22

]
. (15)

To find D,C1, C2, we denote z =

[
x
v

]
, NL = I + (I −

PΓ,R)S, and NR = I +K(I − P
E

1/2
zz ,L

), where S and K are
arbitrary matrices. Matrix Tz and its SVD are defined similar
to Tx and the SVD of Tx, respectively, in Section II. Here, v is
still arbitrary.

Theorem 2: Optimal D = D(1), and C1 = C
(1)
1 and C2 =

C
(1)
2 are given by

D(1) = NLΓ
†UTz,k, [C

(1)
1 , C

(1)
2 ] = UT

Tz,kΓEyzE
†
zzNR. (16)

For the fixed compression ratio c, the associated error is

εGBT2(v) = min
D,C1,C2

E

[
‖Γ (y −D[C1x+ C2v])‖22

]
= ‖(ΓEyy)

1/2‖2 − α2(v) (17)

where α2(v) =
∑rz

j=1 σj(Tz), rz = k if k ≤ rank (Tz) and
rz = rank (Tz) if k > rank (Tz).

Proof: The proof is similar to the proof of Theorem 1
subject to the appropriate changes in notation. �

B. Determination of v

1) First Method: The practical approach is to replace the
cost in (15) with the sample version, J(D,C1, C2, Y, V ) :=
‖Γ (Y −D[C1X +C2V ])‖2 = ‖G−HV ‖2, where
Y ∈R

m×s, X ∈ R
n×s are samples of y, x, respectively,

V ∈ R
n×s, G = Γ (Y −DC1X) and H = ΓDC2. In this

setting, we determine optimal V iteratively as follows.
First, for an arbitrary V , determine optimal D(1), C

(1)
1 ,

C
(1)
2 such that J(D(1), C

(1)
1 , C

(1)
2 , Y, V ) = minD,C1,C2

J(D,

C1, C2, Y, V ). Then, D(1), C
(1)
1 , C

(1)
2 are given as in (16)

where Eyz is replaced with s−1Y ZT where Z = [XT , V T ]T .

Write Y (1) = Γ †ΓD(1)[C
(1)
1 X + C

(1)
2 V ]. Second, find

D(2), C
(2)
1 , C

(2)
2 such that J(D(2), C

(2)
1 , C

(2)
2 , Y (1), V ) =

minD,C1,C2
J(D,C1, C2, Y

(1), V ). Find the minimal-

norm V (1) such that J(D(2), C
(2)
1 , C

(2)
2 , Y (1), V (1)) =

minV J(D(2), C
(2)
1 , C

(2)
2 , Y (1), V ). Then,

V (1) = H(2)†Γ (Y (1) −D(2)C
(2)
1 X), (18)

where H(2) = ΓD(2)C
(2)
2 . Then the procedure is repeated with

V (1) instead of V until the tolerance for the estimate of Y is
achieved.

Convergence will be elaborated and reported elsewhere in the
near future.

2) Second Method: In particular, v can be chosen as v =
x2, where x2 is given by x2(ω) = [x2

1(ω), . . . ,x
2
n(ω)]

T and
x2
j (ω) = [xj(ω)]

2. Although this choice of v is simple, it is not
optimal.

Furthermore, the error representations in (5) and (17) imply
εGBT1 − εGBT2(v) = α2(v)− α1. Therefore, if α1 < α2(v)

Fig. 2. Example 4: Illustrations to conditions α1 < α2(x2), α1 <
α2(V (10)) (a) and MSEs (b).

then, for the same compression ratio c, the error associated with
the GBT2 is less than that of the GBT1, i.e., εGBT2(v) < εGBT1.
The condition α1 < α2(v) can be used in testing experiments
as those in Examples (3) and (4) below.

C. Models of Compressor and Decompressor by GBT2

Compressed signal is represented by u = C1x+ C2v.
Compressor and decompressor are represented by C1 and C2,
and D, respectively.

Example 3: Let x = y + σ2ξ where y ∈ L2(Ω,R100)
is a uniformly distributed random vector, σ ∈ R, v = x2

and ξ ∈ L2(Ω,R100) is white noise. Vectors x, y, and
ξ are assumed to be independent. Therefore, Eyy =

{ηij}100i,j=1, ηij =

{
1/3, i = j,

1/4, i �= j,
Eyx = Eyy, Eξξ = σ2I ,

Exx = Eyy + Eξξ, Eyx2 = {λij}100i,j=1, λij =

{
1/4, i = j

1/6, i �= j,

Eyz = [EyyEyx2 ], where z= [xT (v)T ]T , Ex2x2 =

{μij}100i,j=1, μij

{
1/5, i = j

1/9, i �= j,
Eξ2ξ2 = 2σ4I , and Ezz =[

Exx Eyy

Eyy Ex2x2 + Eξ2ξ2

]
. Let, e.g., k = 50 and σ = 0.4. Then,

α1 = 27.7, α2 = 30.0, and εGBT1 = 7.01, εGBT2 = 5.8.
Example 4: Let y be a uniformly distributed random vector,

x = s1y + s2δ, s1, s2 ∈ [0.1, 10] and δ is a Gaussian random
vector with mean zero and variance one. The covariance matri-
ces are formed from samples Y ∈ R

50×150 and X ∈ R
50×150.

In each test, Y , X , and diagonal Γ with entries within (0, 1)
are chosen randomly. In Fig. 2(a), for s1 = 0.5 and s2 = 8,
conditions α1 < α2(x

2), α1 < α2(V
(10)) are illustrated where

values of α1 and α2 are represented versus experiment num-
bers. In Fig. 2(b), for the same s1 and s2, values of the errors
are given. In all 100 experiments, the GBT2 with optimized
V given by V (10) provides better associated accuracy. In fact,
Fig. 2 represents typical diagrams of the experiments we made
for different values of s1, s2 ∈ [0.1, 10].
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