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The color of Tectona grandis wood is an attribute that favors its commercialization, however, wood
color from fast-growth plantation trees is clear and lacks uniformity. The aim of this work is to
characterize steamed teak wood by means of the Fourier transform infrared spectroscopy (FTIR)
and L�a�b� color systems. Two moisture conditions (green and 50%) and two grain patterns (°at
and quarter) of boards were analyzed through the application of di®erent steaming times (0, 3, 6, 9,
12, 15 and 18 h). The FTIR results showed that the bands at 1158, 1231, 1373 and 1419 cm�1 did not
show any change with steaming, whereas the bands at 1053, 1108, 1453, 1506, 1536, 1558, 1595,
1652, 1683, 1700 and 1733 cm�1 presented a decrease in the intensity with the steaming time. The
band at 1318 cm�1 was the only one that increased. Lightness (L�) was the most a®ected parameter,
followed by yellowness (b�), while redness (a�) showed the smallest change. Surface color change
(�E �) presented the lowest value between 3 h and 6 h of steam-drying in the boards with °at grain,
whereas for boards with quarter grain, the smallest �E � value was obtained after 18 h of steaming.

Keywords: Wood treatment; steam-drying treatment; surface analysis; tropical wood; color
uniformity.
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1. Introduction

Tectona grandis L.f. has been largely planted in many

tropical regions, including Latin America, Asia,

Africa and Oceania, covering approximately 6 million

ha.1 Thanks to its physical, mechanical and aesthet-

ical properties, the wood of this tropical species has

become one of the most important in international

markets.2

Additionally, teak wood color is considered a

major attribute regarding commercialization.3 Thu-

lasidas et al.4 indicated that teak wood is a premier

hardwood valued for the attractiveness of its golden

yellow or brown color.

Teak color has been widely studied in the past few

years.2 The color of the wood from trees grown in

plantations is lighter than the color of the wood from

natural forests.5,6 For this reason, the price of the

wood from trees from short-rotation plantations is

lower in the timber market.4

In addition to its lighter color, the great variability

of the heartwood color of teak wood is another in-

convenience.3,7 For example, Moya and Berrocal7

found approximately 15% variation in the wood color

parameters (lightness (L�), redness (a�) and yellow-

ness (b�)). Thulasidas et al.4 found a similar variation

in wood from homegarden trees. Finally, Moya and

Marín5 found 31–53% variation in the color para-

meters (L�, a�, b�) in cloned trees.

There are various techniques to homogenize the

color of the wood or to try to achieve more uniform

darker colors.8 Steam-drying treatment has been

known for a long time as one of the most e®ective

methods to improve the dimensional stability, decay

resistance and durability of wood, while simulta-

neously darkening the wood color.9 In terms of the

mechanism for the dark color development, the

properties and quantities of major chemicals and ex-

tractive compositions in wood are modi¯ed during the

steam-heat treatment.9

Wood color can also be homogenized through

drying. However, studies on how to obtain darker

teak wood are still un¯nished.2 For example, in a ¯rst

attempt, Berrocal and Agüero10 applied a system of

preservation and coloring in order to homogenize the

color of the sapwood and the heartwood. Salas and

Moya,11 meanwhile, found that lightness diminished

while redness and yellowness increased after the

process of wood drying with three di®erent methods

(air, kiln and solar drying), thus resulting in darker

wood.

Other forms of changing the color of teak wood

have been implemented which focus on growing trees.

They are focused on when the trees are growing.

Recently, Moya and Marín5 proposed the genetic se-

lection of trees with similar color conditions to that of

trees growing in plantation conditions, in order to

achieve darker and less variable improved teak wood.

The color change produced by steaming or drying

is caused by chemical changes in the wood surface.

The Fourier transform infrared spectroscopy (FTIR)

has made it possible to perceive those changes. Spe-

ci¯cally, changes occurring in the 800–1800 cm�1

band are being studied.12 Huang et al.13 and Lionetto

et al.14 have shown that employing the ratio I1316/

I1336 provides information concerning the process of

degradation of the amorphous and crystalline cellu-

lose zones during the steaming. Moreover, changes

due to steaming at peaks at 1738, 1596 and 810 cm�1

show alterations in the wood hemicellulose and

lignin.12,15

Although e®orts have been made to standardize

the color of teak wood from plantation trees, little

research has been conducted as to the changes pro-

duced by steaming in combination with drying on the

wood of trees from fast-growth plantations. There-

fore, the aim of the present study is to establish the

changes of color (measured by L�a�b� color systems)

as well as the chemical changes (by FTIR measure-

ments) occurring in the wood surface, using various

steaming times (0, 3, 6, 9, 12, 15 and 18 h) in °at and

quarter pattern boards in two conditions of moisture

content (MC): green and 50%. This work will allow to

establish the best conditions regarding steaming

time and MC of Tectona grandis with di®erent grain

patterns.

2. Materials and Methods

2.1. Provenance of the wood, sampling
and moisture condition

For the present study, 11-year-old trees from a second

thinning intervention in a plantation owned by

Aserradero S&Q, located in Rincón de Osa in the

province of Puntarenas, Costa Rica (8�40'38"N;
83�29'43"W), were used. Tectona grandis 11 years

old with 3� 3m spacing (1100 trees�ha�1Þ. Stand
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density was 475 trees � ha�1, with an average diame-

ter at breast height (DBH) of 23 cm and 14m height.

The heartwood percentage at DBH varied from

65% to 80%. Approximately, four 2.5m long logs

were extracted from the selected trees. Nine trees

were selected from plantation because this number

of trees are typically used for determining wood

properties.13

The logs were sawn using a grain pattern to pro-

duce 25-mm-thick boards, allowing for °at-grain- and

quarter-grain-patterned boards. About 120 boards

were selected, out of which 60 where °at-grain- and

the remaining 60 were quarter-grain-patterned. The

boards from each grain pattern were then separated

into two groups of 30 boards each. One group pat-

terned green condition — was stored to retain the

moisture. A second group was air-dried to reach 50%

MC. Once both conditions of MC were reached,

seven test samples approximately 2.5 cm in width

and 35 cm long were extracted from each one of the

boards.

2.2. Steam-drying treatment

For each steam-drying test with water, 30 test sam-

ples of each grain pattern and moisture condition

were used (7 steaming times� 2 grain patterns� 2

moisture conditions� 30 samples¼ 840 samples).

A steam pilot wooden chamber (200 cm� 30 cm�
30 cm) was used (Fig. 1) and the steam was provided

by a 19-l water-heating tank. An electric resistance

was employed to boil the water (Fig. 1).

Steam-drying treatments are described in Table 1;

about seven di®erent treatments were applied. For

each grain pattern and for each moisture condition,

four di®erent baths were conducted. The treatments

consist of one control sample and six treatments

including steaming of the wood in six di®erent dry-

ing times, with a di®erence of 3 h between them

(Table 1). First, water steam was added into the

chamber for a conditioning period of 3 h during which

the chamber reaches approximately 70�C. The wood

to be steam-dried is separated into each grain pattern

and moisture condition in seven packages of 30

(a) (b)

Fig. 1. (a) Pilot steaming chamber utilized and (b) intensity at 1031 cm�1 band at di®erent steaming times in Tectona
grandis wood with °at pattern and quarter pattern with di®erent steaming times.

Table 1. Description of the steam-drying treatments applied to Tectona grandis wood in plantations.

No. Steaming time (h) Descriptions

1. 0 Control treatment, 0 h steaming and samples dried to 12% MC.
2. 3 Wood was steamed for 3 h and dried to 12% MC.
3. 6 Wood was steamed for 6 h and dried to 12% MC.
4. 9 Wood was steamed for 9 h and dried to 12% MC.
5. 12 Wood was steamed for 12 h and dried to 12% MC.
6. 15 Wood was steamed for 15 h and dried to 12% MC.
7. 18 Wood was steamed for 18 h and dried to 12% MC.

Notes: About 3 h of conditioning was applied in all treatments before initiating the steaming.

Surface Chemical and Color Characterization of Steam-Dried Tectona grandis Wood
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boards each. The control package is left without

steam and the other six packages are introduced into

the chamber once it has been conditioned and

steaming continues. Every 3 h, one package is taken

out of the chamber and the wood is dried to reach

12% MC. The steaming time was selected according

to previous research in tropical species.16

2.3. Measurement and analysis
of the FTIR spectra of the
surface of the wood

Once the steam-drying treatment with di®erent times

(0, 3, 6, 9, 12, 15 and 18 h) is ¯nished for each grain

pattern, three di®erent boards were taken randomly

from each time and grain pattern and two small

samples were extracted from the surface of the board.

Their dimensions (width� length� thickness) were

1 cm�1 cm 2�1mm (this part is in the surface of

the board). The FTIR spectra of the three samples

were measured on the surface of the wood by means of

a Nicolet 380 FTIR spectrometer (Thermo Scienti¯c)

using a single re°ectance ATR cell (equipped with a

diamond crystal). All data were recorded at room

temperature, in the spectral range of 4000–700 cm�1,

by accumulating 64 scans with a resolution of 1 cm�1.

The FTIR spectra obtained were then processed

by the softwares Spotlight 1.5.1, Hyperview 3.2 and

Spectrum 6.2.0 developed by Perkin Elmer, Inc.

Baseline correction was applied at 1800–800 cm�1

and the main components in this vibration band were

identi¯ed. This band was selected as several studies

have identi¯ed it as the range where the variation in

the changes of the surface of the wood mostly

occurs,17,18 which are described in Table 2. The

height of each peak for each steaming time was

recorded and standardized taking the I1031 band as a

reference, given its stableness in all the conditions

studied. The ratio between the various peaks in the

range of 800–1800 cm�1 (Eq. (1)) was then calculat-

ed, as well as the band at 1031 cm�1 (1) all times and

di®erent grain patterns. This band was selected be-

cause large di®erences were not observed among

treatments. The intensity was 0.155 cm�1 in wood

with °at pattern and 0.118 cm�1 in wood with radial

pattern with di®erent steaming times (Fig. 1(b)).

Table 2. Summary of FTIR bands observed between 800 cm�1 and 1800 cm�1 in steam-treated Tectona grandis wood
surface.

S. No. Position (cm�1) Peak assignments Structural polymers

Peaks present in all Tectona grandis samples
1. 810 C¼O Glucomannan
2. 1031 C–O stretch Cellulose and hemicellulose
3. 1053 C–O stretch Cellulose and hemicellulose
4. 1108 Aromatic skeletal and C–O stretch Polysaccharides and lignin
5. 1158 C–O–C vibration Cellulose and hemicellulose
6. 1231 C–O of syringyl ring Lignin
7. 1318 C–O vibration Lignin
8. 1373 C–H deformation Cellulose and hemicellulose
9. 1419 C–H in-plane deformation with aromatic ring stretching Lignin
10. 1453 CH deformation, asymmetry in CH3 and CH2 Cellulose
16. 1506 Aromatic skeletal vibration (C¼C) Lignin
19. 1595 Aromatic skeletal vibration (C¼C) Lignin
24. 1652 Conjugated C¼O inquilines coupled with C¼O stretching of

various groups
Hemicellulose

25. 1717 C¼O stretching In the carboxylic acid in lignin
26. 1733 Conjugated C¼O Xylan in hemicelluloses

Peaks present in all quarter Tectona grandis wood samples
1616 Aromatic skeletal vibration (C¼C) Tannin
1635 Aromatic skeletal vibration (C¼C) Tannin
1675 C¼O stretching in conjugated aromatic Lignin

Source: Li et al.18 and Bonifazi et al.23
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Ratio of intensity ðIn=T1031Þ

¼ Intensity of peaks between 1800 to 800 cm�1

Intensity of 1031 cm�1
:

ð1Þ

2.4. Surface color measurement and
determination of color change

For all conditions of MC and grain pattern, color was

evaluated before the steam-drying treatment. Wood

surface color was also determined after each steam-

drying treatment once the wood reached approxi-

mately 12% MC. The MiniScan XE Plus19 spectro-

photometer was utilized to obtain the values of the

standardized chromatological system CIEL�a�b�.
The range for this measure is from 400 nm to 700 nm,

with 11mm opening at the point of measurement.

The observation of the re°ection included the spec-

ular component (SCI mode), at an angle of 10�, which
is normal for the surface of the specimen (D65/10); a

visual range of 2� (Standard observer, CIE 1931) and

an illumination standard of D65 (corresponding to

daylight at 6500K).

In the analysis of color change, the change in the

color parameters (L�, a�, b�) was calculated ¯rst with

the aid of Eq. (2).

�P ¼ Pb � Pa; ð2Þ
where �P ¼ represents the absolute value of wood

color parameters (L�, a� or b�) change between after

and before steaming process. Pb is the wood color

parameters (L�, a� or b�) after the steam-drying

treatment and Pa is the wood color parameters (L�,
a� or b�) before the steam-drying treatment.

Following, color change was determined, utiliz-

ing the parameter �E � calculated according to

the ASTM D 2244 standard20 whose formula is de-

tailed in Eq. (3). The color di®erence (�E �) was

determined for (i) color change that occurred in the

wood surface, taking the color before steam-drying

treatment as a model, (ii) color change after the

steam-drying treatment and (iii) the surface color

of wood coming from the natural forest and mature

trees,5 aimed at establishing the treatment with

the lowest color di®erence with respect to commonly

commercialized wood of natural forests (over 100-

year-old).

�E � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�L�Þ2 þ ð�a�Þ2 þ ð�b�Þ2

p
; ð3Þ

where �E � ¼ wood color di®erence, �L ¼ L� be-

fore steaming �L� after steaming; �a ¼ a� before

steaming �a� after steaming and �b ¼ b� before

steaming �b� after steaming. For color change in

(ii), the values of L�, a� and b� after steaming were

substituted by L� ¼ 44:94, a� ¼ 12:44 and

b� ¼ 24:26, which correspond to the color para-

meters measured in the wood coming from the

natural forest.

2.5. Statistical analysis

In each grain pattern (°at or quarter pattern), a

variance analysis (ANOVA) was applied. The aim

was to know whether di®erences in the parameter

before and after steam-drying treatment exist. The

model included the following sources of variation:

steaming time (t) at seven levels (0, 3, 6, 9, 12, 15 and

18 h), MC at two levels (green and 50%) and inter-

action between t and MC. The SAS GLM procedure

(SAS Institute, Inc.) was used to conduct the analysis

of variance.

In addition, a forward stepwise analysis was ap-

plied to determine the e®ects of the three color

parameters �a�, �b� and �L� on the teak wood

color before and after steam-drying treatment, with

wood from natural forests as a model. For the FTIR

spectra, a scatter plot and then regression analysis

were conducted taking into account the steaming

time (x-axis) and the intensity ratio values (y-axis).

The change in the intensity ratio peak assignment

was thus observed for the di®erent steaming times.

3. Results and Discussion

3.1. Surface chemistry of steamed
Tectona grandis wood measured by
means of the FTIR spectra

Although the entire range of the spectra ð4000–
400 cm�1Þ was not presented, signals were present in

all the steaming periods and grain patterns in the

region 3500–2500 cm�1, corresponding to stretching

of O-H group (close to 3400 cm�1), C–H and CH2

asymmetric and symmetric stretching (2940 cm�1

and 2906 cm�1, respectively) of the combination of

cellulose, hemicelluloses and lignin.21,22
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Peak assignments varied slightly in each type of

wood (°at or quarter grain) and MC (green and 50%)

in the band studied (1000–1800 cm�1). Table 2

summarizes in its ¯rst part the common peaks for

di®erent types of wood treatment and presents the

peak assignments, as well as to which polymer they

are assigned, based on reports from Moore and

Owen,21 Li et al.18 and Bonifazi et al.23

The infrared spectra of the di®erent treatments

studied had revealed that the positions of most bands

and their intensities in the ¯ngerprint region are

similar while some are slightly di®erent (Fig. 2). It

was found that the chemical components with the

signal at 810, 1035, 1053, 1108, 1158, 1231, 1318, 1373

(C–H in-plane deformation for polysaccharides), 1419

(C–H in-plane deformation), 1453 (C–H deformation

and aromatic skeletal vibrations), 1506 (aromatic

skeletal vibrations), 1558, 1595 (aromatic skeletal

vibrations), 1652 (conjugated carbonyl), 1683; 1700;

1717 and 1733 cm�1 (stretching of the carbonyl

group C¼O) are present in all surfaces in the di®erent

treatments (Figs. 2(a) and 2(b)), while chemical

components with the signal at 1540; 1554; 1575; 1616

; 1635; 1675and 1695 cm�1 were observed in the FTIR

spectra of the radial samples when the wood was not

steam-treated (Figs. 2(c) and 2(d)).

As for the variation of the intensity ratio for

each one of the peaks within the band of

800–1800 cm�1, it was observed that the signal at

1158, 1231, 1373 and 1419 cm�1 did not show any

trend in the index, due to the treatment of the wood

with di®erent steaming times and grain patterns of the

boards. Meanwhile, the signals at 1053, 1108, 1453,

1506, 1536, 1558, 1595, 1652, 1683, 1700 and 1733

cm�1 showed diminution of the index of vibration re-

garding the steaming time (Figs. 3(a), 3(b) and 3(d)–

3(l)). The only vibration where the index augmented

was 1318 cm�1 (Fig. 3(c)). In the same way, the vari-

ation coe±cient varied from 10% to 22% at di®erent

intensities (Table 3) and any tendency was not found.

As for the signals at 1540, 1554, 1575, 1616, 1635,

1675 and 1695 cm�1, present in the FTIR spectra of

the quarter pattern samples of wood not treated with

steam, they diminished or disappeared once the wood

was steam-treated (Figs. 3(c) and 3(d)).

As for the bands associated to cellulose (1053,

1373, 1158 and 1453 cm�1), a decrease in the signals

in the band between 1053 cm�1 and 1453 cm�1

(Figs. 3(a) and 3(d)) was observed, while the signals

at 1318 cm�1 increased (Fig. 3(c)). Meanwhile, the

signals 1373 and 1158 cm�1 did not show any mod-

i¯cations. The diminutions observed in the cellulose

indicate either the occurrence of changes in its

structure or the formation of other compounds, such

as the formation of aliphatic alcohols during steam-

ing,18 which becomes evident in the change of the

intensity at 1055 cm�1.

A major aspect to emphasize of the steaming

process in Tectona grandis wood, is the variation in

the intensity of the signals at 1053 cm�1 (Fig. 3(a))

and the increment in the intensity at 1318 cm�1

(Fig. 3(c)). These changes are designated to increase

the glucose ring stretching vibration, and may be due

to the cleavage and dehydration of amorphous car-

bohydrates and/or crystallization of the paracrystal-

line region of cellulose.14The increment in the intensity

ratio in the signal at 1318 cm�1 (Fig. 3(c)) indicates a

decrease in the percentage of cellulose crystallinity.18

This reveals that the amorphous regions of the teak

wood increase with the steaming time.14

The changes in the intensity of the signals associ-

ated with hemicelluloses and lignin— shown in peaks

at 1733 cm�1 (O-acetyl-4-O-methylglucurono-xylan)

(Fig. 3(l)), and 1595 cm�1 (belonging to C¼O

stretching vibrations in the carboxyl group of glu-

curonic acid unit in xylan) (Fig. 3(h)) — to the aro-

matic skeletal vibrations plus C–O stretch of lignin24

and to vibrations caused by the equatorially aligned

hydrogen at the C2 atom in the mannose residue of

glucomannan,15 clearly indicating the changes in the

structure of the hemicelluloses and the structure of

the lignin of teak wood as a result of steaming.

There is a important reference at 810 cm�1 inten-

sity. Any signal was found in this intensity for quar-

ter, °at or moisture conditions (Fig. 4). According to

Guo et al.,12 in softwood species, the 810 cm�1,

coorrespondent to C¼O in the O¼C–OH group of

the glucuronic acid unit of the glucomannan band,

decreased by 47% in steam wood. They a±rmed that

this chemical change might be related to the e®ect of

the compression which presumably created more po-

rous structures in earlywood due to the heavy dis-

tortion of the cell wall but caused a closure of lumens

in latewood. Such pores, small cracks and more open

lumens would facilitate penetration of steam, leading

to higher degradation of hemicellulose structures in

the earlywood.12 However, this structural change

was not found in Tectona grandis, showing with this
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result the di®erences between softwood and hard-

wood species.

Nevertheless, those changes behaved di®erently

with the steaming time and the grain pattern. For

example, with the change of intensity at 1595 cm�1

(Fig. 3(h)), associated to lignin, the main change

occurs at 3 h of steaming, with no more changes

thereafter. On the other hand, regarding the intensity

associated to xylan, an increment in the ratio

I1733/I1031 is observed with the steaming time

(Fig. 3(l)), indicating further change in the structure

of this hemicellulose due to the steaming process.

The intensity of vibration of the xylan band at

1453 cm�1 (Fig. 3(d)) ascribed to CH2 symmetric

bending on the xylose ring15 only showed small

changes for the di®erent steaming times. Because the

1456 cm�1 peak, associated to the xylan backbone,

was nearly una®ected, it is probable that no major

degradation of the xylan backbone had occurred, and

that the primary e®ect on the xylan was a side group

splitting.12

The larger decrease in the relative signal between

1596 cm�1 to 1733 cm�1 (Figs. 3(h)–3(l)), especially

during the ¯rst 3 h of steaming of the °at pattern

Fig. 2. FTIR spectra of steamed Tectona grandis wood with °at pattern (a) and (b) and quarter pattern (c) and (d) with
di®erent steaming periods.

Surface Chemical and Color Characterization of Steam-Dried Tectona grandis Wood

November 5, 2015 12:15:36pm WSPC/149-SRL 1550091 ISSN: 0218-625X
2ndReading

1550091-7



F
ig
.
3.

C
h
an

ge
s
in

th
e
ra
ti
o
of

in
te
n
si
ty

(I
n
/T

10
31
)
b
an

d
at

d
i®
er
en
t
st
ea
m
in
g
ti
m
es

in
T
ec
to
n
a
gr
a
n
d
is

w
oo

d
w
it
h
°
at

p
at
te
rn

an
d
q
u
ar
te
r
p
at
te
rn

w
it
h
d
i®
er
en
t

st
ea
m
in
g
ti
m
es
.

A. Berrocal et al.

November 5, 2015 12:15:41pm WSPC/149-SRL 1550091 ISSN: 0218-625X
2ndReading

1550091-8



samples, and the steady diminution in quarter pat-

tern samples (Fig. 3(h)), in combination with the

lower change in intensity at 1506 cm�1 (Fig. 3(e)),

indicate that a loss of the C¼O group linked to the

aromatic skeleton of lignin has probably occurred.

This could indicate that cross-links have been formed

between aromatic units in the lignin. Obviously, dif-

ferent behaviors are observed for hemicelluloses

and lignin in relation to the degradation under

steam conditions. This points to the degradation of

Table 3. Coe±cient of variation (%) of change in the ratio of intensity (In=T1031) band at di®erent steaming
times in Tectona grandis wood with °at pattern and quarter pattern with di®erent steaming times.

Radial grain Tangential grain Radial grain Tangential grain

IT TS(h) 50% Green 50% Green IT TS(h) Green 50% Green 50%

1053 0 16 23 21 17 1108 0 19 23 13 20
3 15 14 14 19 3 15 16 15 20
6 22 20 15 24 6 15 32 16 23
9 19 29 15 22 9 12 30 13 22
12 18 24 13 20 12 18 26 20 24
15 9 18 14 31 15 12 19 19 35
18 17 21 16 22 18 12 23 23 21

1318 0 17 10 11 21 1453 0 22 15 21 18
3 23 13 15 15 3 21 17 21 20
6 20 24 17 22 6 20 16 20 18
9 20 21 17 18 9 16 17 18 19
12 20 15 18 24 12 22 18 20 21
15 18 15 13 21 15 16 17 18 17
18 18 14 14 21 18 18 21 22 20

1506 0 16 12 24 21 1536 0 15 15 17 18
3 12 19 19 20 3 21 15 16 16
6 19 17 17 20 6 22 16 18 17
9 16 22 26 23 9 19 14 20 20
12 25 19 19 24 12 16 17 15 13
15 17 17 22 21 15 22 20 17 16
18 14 25 24 21 18 19 19 12 14

1558 0 15 12 15 12 1595 0 15 12 15 17
3 13 11 15 10 3 10 15 17 19
6 12 11 14 10 6 13 17 18 18
9 11 11 12 13 9 17 18 16 16
12 14 13 15 11 12 14 11 16 13
15 11 13 13 13 15 19 14 15 18
18 11 12 13 9 18 21 12 16 17

1652 0 17 13 17 13 1683 0 13 23 17 20
3 16 12 19 17 3 16 18 18 20
6 17 17 16 17 6 17 18 18 20
9 17 16 17 19 9 15 20 20 21
12 14 11 15 19 12 19 22 22 20
15 15 13 15 19 15 15 21 22 19
18 18 12 15 16 18 15 21 19 19

1700 0 19 22 22 12 1703 0 19 14 16 12
3 15 19 23 14 3 15 17 13 14
6 14 19 20 12 6 14 13 17 12
9 16 15 18 12 9 16 15 18 12
12 13 21 23 11 12 13 13 13 14
15 19 16 23 12 15 14 16 13 13
18 14 22 15 14 18 14 13 15 13

Notes: IT: intensity; TS: time of steaming.
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hemicelluloses and lignin following di®erent path-

ways. Lignin cross-linking is probably a radical reac-

tion25 which might be favored by the increased

density of the wood material while the hemicellulose

degradation is probably more favored by the more

open access to dissolution of carbohydrates.26

3.2. Color change in Tectona grandis
surface wood induced by steaming
and drying

Wood color before the steam-drying treatment

showed di®erences by grain pattern and MC. Flat

pattern boards in the two moisture conditions studied

(green and 50%) presented lower values of lightness

(L�) and higher values of redness (a�) relative to

quarter pattern boards. As for yellowness (b�), the
color showed no di®erence between °at and quarter

patterns before steaming (Table 4). Di®erences in

color by grain pattern have been pointed out for

several species.27,28

The di®erences in the color parameters L� and a�

and the lack of di®erence among parameter b�, may

be explained by two studies: (i) according to Gier-

linger et al.,29 redness (a�) and lightness (L�) indexes

are more correlated with wood extractive content,

while the yellowness index is primarily related to the

lignin's photochemistry; (ii) on the other hand,

Valverde and Moya30 mention that many extractives

settle in the radial parenchyma cells, which means

that in a radial surface, color will change more than

that in a tangential surface. Therefore, L� and a�

should be expected to change in green condition, since

the extractives are exposed and the lignin still has not

begun to photodegrade as the drying process has not

started, which explains why the di®erences in b� are

not observed in °at and quarter pattern boards.

The magnitude of the color parameters changed in

the di®erent steaming–drying times (Table 4), L� in

particular, followed by b� and, to a lesser extent, a�.
The steam-drying treatment increased lightness (L�)
signi¯cantly in °at and quarter grain green-condition

boards (Table 4); however, when the board presents

MC above 50%, the e®ect is the opposite, signi¯cantly

reducing L�.
This behavior is re°ected in the di®erential values

of luminosity (�L�Þ. �L� values in °at and quarter

pattern steam-dried woods were positive for wood in

green condition, as opposed to 50% MC wood, where

�L� values were negative (Figs. 5(a) and 5(b)). No

Fig. 4. FTIR spectra from 775 cm�1 to 835 cm�1 of steamed Tectona grandis wood with quarter pattern (a) and (b) and °at
pattern (c) and (d) with di®erent steaming periods.
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de¯ned behavior was observed in °at pattern among

the di®erent times (Fig. 5(a)). The lowest value of

�L� in °at pattern boards was observed during the

9 h of steam-drying and in the 3 h of steaming, for

green-condition wood and 50% MC, respectively

(Fig. 5(a)). For quarter pattern board, the �L�

values were not the lowest, after 12 h of steaming of

the green-condition wood, while an increase in the

steaming time in 50% MC wood was observed

(Fig. 5(b)).

Meanwhile, the parameter of redness (a�) was

statistically una®ected in °at and quarter pattern

boards in green condition between 0 h and 12 h of

steaming–drying. Nevertheless, in the 15- and 18-h

steaming treatment, the parameter a� decreased sig-

ni¯cantly in both types of grain pattern (Table 4).

This is re°ected in the fact that the largest di®erential

redness value (�a�) was observed at those steaming

times in the two types of grain pattern (Figs. 5(c)

and 5(d)). Steam-drying results vary between °at and

quarter patterns when the wood has 50% moisture

content. For °at grain boards, the redness value

increases statistically with any steaming–drying time,

while in quarter pattern boards, this color parameter

was not statistically a®ected (Table 4). Again, this

behavior may refer to the changes in the di®erential

redness values (�a�), which were positive (above one)

for °at pattern boards at all steaming times (Fig. 5(c)).

In the quarter pattern boards, the same values were

negative, without exceeding 0.5 (Fig. 5(d)).

The color parameter b� decreased statistically

after steaming–drying for both grain patterns in

green condition, but for the wood with 50% MC, it

was only a®ected statistically in the °at pattern

boards that have been subjected to the steam-drying

treatment during 3 and 9 h of streaming and in

Table 4. Lab system color parameters of Tectona grandis wood before and after the di®erent
steaming–drying times.

Steaming time (h)

MC Color parameters Time 0 3 6 9 12 15 18

Flat pattern
Green L� Before 40:1A 41.5A 43.4A 43.7A 42.2A 41.2A 42:7A

After 55.2B 53.9B 54.2B 53.5B 55.7B 55.5B 54.4B
a� Before 11:7A 10.8A 10.4A 11.1A 11.3A 11.5A 11:1A

After 11.0A 11.2A 10.4A 9.9A 10.3A 9.9B 9.6B
b� Before 29.0A 28.4A 29.1A 28.9A 29.4A 28.3A 29:4A

After 27:8A 25.4B 27.0B 26.2B 27.9A 26.5B 25.6B
50% MC L� Before 56:5A 53.5A 54.9A 55.1A 55.4A 57.4A 55:8A

After 51.2B 50.5B 50.4B 51.7B 51.4B 50.0B 50.2B
a� Before 8.1A 8.0A 8.2A 7.8A 8.0A 7.4A 7:3A

After 9.4B 9.6B 9.1A 9.4B 9.3B 8.4B 8:5A
b� Before 22:9A 23.8A 25.6A 25.7A 27.6A 27.8A 27:7A

After 23:8A 25.7B 26.3A 28.6B 29.0A 28.1A 28:4A
Quarter pattern

Green L� Before 45:4A 46.6A 43.3A 45.2A 46.3A 45.2A 43:6A
After 54.5B 57.3B 56.6B 57.5B 56.1B 55.1B 53.7B

a� Before 9:1A 9.4A 10.3A 9.8A 9.2A 9.5A 10:4A
After 8:7A 8.9A 9.4A 9.0A 8.6A 7.8B 7.6B

b� Before 29:9A 29:4A 28.5A 29.1A 29.7A 29.1A 27:1A
After 27.8B 27.5B 26.5B 28.1A 27.3B 25.3B 24.3B

50% MC L� Before 61:3A 62.7A 62.5A 62.1A 62.5A 62.2A 61:5A
After 60:2A 60.5B 60.2B 59.5B 57.5B 56.0B 54.4B

a� Before 8:4A 8.1A 9.1A 9.0A 8.7A 8.5A 8:7A
After 8:8A 8.3A 8.6A 8.8A 8.2A 8.0A 8:2A

b� Before 27:8A 30.9A 27.8A 27.5A 26:8A 29:5A 29:1A
After 29:2A 28.6A 28.3A 28.4A 26.6A 25.8B 24.5B

Notes: MC: moisture content.
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quarter pattern boards between 15 h and 18 h of

steaming (Table 4). The di®erential change of yel-

lowness (�b�) showed that the greatest di®erentials

are observed at 3 and 9 h in °at pattern board, and

after 15 h of steaming in quarter pattern boards

(Figs. 5(e) and 5(f)).

The behavior of the color parameters is compared to

other studies, such as Salas and Moya11 and Basri

et al.,31 whichwere conducted under similarmoisture or

grain pattern conditions. The abovementioned authors

found that L� and b� diminished statistically when the

wood is dried, whereas a� was statistically una®ected.

The results were only congruent for 50%MCwood and

not for °at pattern (Table 4) or green-condition wood.

In the evaluation of the surface color change

(�E �) after the steam-drying treatment, compared

to the teak from natural forest, a minor change was

obtained in the °at grain wood between 3 h and 6 h

steaming–drying, for both moisture conditions. Fur-

thermore, color change tends to decrease in quarter

pattern boards with increasing steaming–drying time

(Fig. 6).

The wood color di®erence index �E � (Eq. (1)) is

expressed as a distance between two points in the

color coordinate system, with the quadratic addition

of each coordinate di®erence.20 Cui et al.32 mentioned

that the color's change value (�E �) de¯ned the levels

at which color di®erences are perceived. When the

values of �E � rise above 10, color change is very

appreciable. Consequently, it is preferable to ¯nd a

steaming condition with the lowest �E � values rel-

ative to teak wood from natural forests5 in order to

Fig. 5. Color di®erentials of parameters L�, a� and b� before and after steam-drying Tectona grandis °at and quarter
pattern boards in two moisture conditions (green and 50% MC).
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achieve the desirable color. According to the �E �

values found with the di®erent steaming times and

grain patterns (Fig. 6), the lowest color di®erence

between steamed wood and model teak is achieved

after 3 h of the steam-drying of the °at pattern boards

at 50% moisture content and 6 h of steam-drying of

the green condition wood. Meanwhile, for quarter

pattern boards, the best condition is 18 h of the

steam-drying (Fig. 5).

Color changes relative to changes in the mod-

i¯cations of the chemical composition of the surface of

°at pattern boards, coincide with the diminution of

the relative intensity between 1596 and 1733 cm�1

(Figs. 3(h)– 3(l)) and the lowest value of the wood

color di®erence index �E � in this type of grain pat-

tern (Fig. 6). As for the quarter pattern board, with

the constant change of the ratio of intensity (ratio

In/I1031), it also coincides with the decrease of the

color change with the steaming time (Fig. 6). This

means that color changes of the wood probably occur

due to the loss of the C¼O group linked to the aro-

matic skeleton of lignin. Speci¯cally, cross-links have

been formed between aromatic units in the lignin.

However, hemicellulose degradation may also be oc-

curring. Glucose, for example, showed alteration in

the signals at 1318 cm�1 (Fig. 3(c)) or xylan, indi-

cated by the alteration in the bands at 1453 cm�1

(Fig. 3(d)), which favor dissolution of carbohydrates

during steaming,31 leaving it more exposed to lignin.

As a result, redness (a�) in the wood tends to be

higher in the case of °at green wood after 3 h of

steaming (Fig. 3(c)), and the di®erences in the values

of �a� in quarter pattern boards after 18 h of

steaming are greater.

4. Conclusion

The FTIR bands at 1031, 1053, 1108, 1158, 1231,

1318, 1373, 1419, 1453, 1506, 1558, 1595, 1652, 1717

and 1733 cm�1 signals in the range studied

(800–1800 cm�1) were found to be present in the

surfaces of all the di®erent treatments. On the other

hand, the chemical components with signals at 1540,

1554, 1575, 1616, 1635, 1675 and 1695 cm�1 were

evidenced in the FTIR spectra of the quarter pattern

samples of wood not subjected to steaming, therefore,

were only present in wood before steaming. Regarding

the signals at 1158, 1231, 1373 and 1419 cm�1, it was

not possible to observe any trend in this intensity;

however, bands at 1053, 1108, 1453, 1506, 1536, 1558,

1595, 1652, 1683, 1700 and 1733 cm�1 showed a de-

crease in the vibration ratio with the steaming time.

The only signal where this ratio augmented was at

1318 cm�1 probably due to the reduction of the cel-

lulose crystallinity by the steaming–drying process,

however further research is required to con¯rm it.

Di®erent steaming–drying times changed the

magnitude of the color parameters, L� in particular,

followed by yellowness (b�) and then by redness (a�).
The evaluation of the color change of the surface due to

steaming–drying, with teak wood from natural forests

as the model, shows that °at pattern boards present

the lowest change between 3 h and 6 h of steaming–

drying in the twomoisture conditions, while in quarter

pattern boards, color change tends to diminish with

the increase of the steaming–drying time.

Color changes relative to changes in the mod-

i¯cations of the chemical composition of the surface of

°at pattern boards, coincide with the diminution

of the relative intensity between 1596 cm�1 and

1733 cm�1 (Fig. 1) and the lowest value of the wood

color di®erence index �E � in this type of grain pat-

tern (Fig. 5). As for the quarter pattern boards, the

constant change of the ratio of intensity (ratio

In/I1031) also coincides with the decrease of the color

change with the steaming time. This means that color

changes of the wood probably occur due to the loss of

the C¼O group linked to the aromatic skeleton of

lignin.

Fig. 6. Color change (�E �) of Tectona grandiswood sur-
face of °at and quarter pattern boards, in green condition
and 50% MC after di®erent steaming–drying times.
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