Towards Multi-Level Classification in Deep Plant Identification
Resumen
In the last decade, automatic identification of organisms based on computer vision techniques
has been a hot topic for both biodiversity scientists and machine learning specialists. Early
on, plants became particularly attractive as a subject of study for two main reasons. On the
one hand, quick and accurate inventories of plants are critical for biodiversity conservation;
for example, they are indispensable in conducting ecosystem inventories, defining models for
environmental service payments, and tracking populations of invasive plant species, among
others. On the other hand, plants are a more tractable group than, for instance, insects. First
of all, the number of species is smaller (around 400,000 compared to more than 8 million).
Secondly, they are better understood by the scientific community, particularly with respect
to their morphometric features. Thirdly, there are large, fast growing databases of digital
images of plants generated by both scientists and the general public. Finally, an incremental
approach based first on "flat elements" such as leaves and then the whole plant made it
feasible to use computer vision techniques early on. As a result, even mobile apps for the
general public are available nowadays.
This document presents the key results obtained while tackling the general problem of fully
automating the identification of plant species based solely on images. It describes the key
findings in a research path that started with a restricted scope, namely, identification of plants
from Costa Rica by using a morphometric approach that considers images of fresh leaves
only. Then, species from other regions of the world were included, but still using hand-crafted
feature extractors. A key methodological turn was the subsequent use of Deep Learning
techniques on images of any components of a plant. Then we studied and compared the
accuracy of a Deep Learning approach to do identifications based on datasets of images
of fresh plants and compared it with datasets of herbarium sheet images for the first time.
Among the results obtained during this research, potential biases in automatic plant identification
dataset were found and characterized. Feasibility of doing transfer learning between
different regions of the world was also proven. Even more importantly, it was for the first
time demonstrated that herbarium sheets are a good resource to do identifications of plants
mounted on herbarium sheets, which provides additional levels of importance to herbaria
around the globe. Finally, as a culmination of this research path, this document presents the
results of developing a novel multi-level classification approach that uses knowledge about
higher taxonomic levels to carry out not only family and genus level identifications but also
to try to improve the accuracy of species level identifications. This last step focuses on the
creation of a hierarchical loss function based on known plant taxonomies, coupled with multilevel
Deep Learning architectures to guide the model optimization with the prior knowledge
of a given class hierarchy. En la última década, la identificación automática de organismos basada en técnicas de visión
artificial ha sido un tema popular tanto entre los científicos de la biodiversidad como para los
especialistas en aprendizaje automático. Al principio, las plantas se volvieron particularmente atractivas como tema de estudio por dos razones principales. Por un lado, los inventarios rápidos y precisos de plantas son críticos para la conservación de la biodiversidad;
por ejemplo, son indispensables para realizar inventarios de ecosistemas, definir modelos
para pagos de servicios ambientales y rastrear poblaciones de especies de plantas invasoras, entre otros. Por otro lado, las plantas son un grupo más manejable que, por ejemplo,
los insectos. En primer lugar, la cantidad de especies es menor (alrededor de 400,000 en
comparación con más de 8 millones de insectos). En segundo lugar, la comunidad científica
las comprende mejor, en particular con respecto a sus características morfométricas. En
tercer lugar, existen grandes bases de datos de imágenes digitales de plantas generadas
tanto por científicos como por el público en general. Finalmente, un enfoque incremental
basado primero en "elementos planos" como hojas y luego en toda la planta hizo posible el
uso de técnicas de visión por computadora desde el principio. Como resultado, incluso las
aplicaciones móviles para el público en general están disponibles en la actualidad.
Este documento presenta los resultados clave obtenidos mientras se aborda el problema
general de automatizar por completo la identificación de especies de plantas basándose
únicamente en imágenes. Describe los hallazgos clave en un camino de investigación que
comenzó con un alcance restringido, a saber, la identificación de plantas de Costa Rica
mediante el uso de un enfoque morfométrico que considera imágenes de hojas frescas solamente. Luego, se incluyeron especies de otras regiones del mundo, pero todavía se utilizaban extractores de características hechos a mano. Un giro metodológico clave fue el
uso posterior de técnicas de aprendizaje profundo (deep learning) en imágenes de cualquier
componente de una planta. Luego, estudiamos y comparamos la exactitud de un enfoque
de aprendizaje profundo para realizar identificaciones basadas en conjuntos de datos de
imágenes de plantas frescas y las comparamos con conjuntos de datos de imágenes de hojas de herbario por primera vez. Entre los resultados obtenidos durante esta investigación,
se encontraron y caracterizaron posibles sesgos en el conjunto de datos de identificación
automática de plantas. La viabilidad de hacer un aprendizaje de transferencia (transfer
learning) entre diferentes regiones del mundo también se demostró. Aún más importante,
por primera vez se demostró que las láminas de herbario son un buen recurso para hacer
identificaciones de plantas montadas sobre láminas de herbario, lo que proporciona niveles
adicionales de importancia para herbarios en todo el mundo. Finalmente, como una culminación de este camino de investigación, este documento presenta los resultados del desarrollo de un nuevo enfoque de clasificación multi-nivel (multi-level) que utiliza el conocimiento sobre niveles taxonómicos superiores para llevar a cabo identificaciones a nivel de familia y
género, y también para tratar de mejorar la exactitud de identificaciones a nivel de especie.
Este último paso se centra en la creación de una función de pérdida jerárquica basada en
taxonomías de plantas conocidas, junto con arquitecturas de aprendizaje profundo de niveles
múltiples para guiar la optimización del modelo con el conocimiento previo de una jerarquía
de clases dada.
Descripción
Tesis de Graduación (Doctorado Académico en Ingeniería) Instituto Tecnológico de Costa Rica, 2018.