Tecnológico de Costa Rica
  • ¿Cómo publicar en el Repositorio TEC?
  • Políticas
  • Recursos Educativos
  • Contáctenos
    • español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Página Principal
  • Grupos de Investigación
  • Portal de Memorias de Congresos
  • Ver ítem
  •   Página Principal
  • Grupos de Investigación
  • Portal de Memorias de Congresos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatarioEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatario

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Towards using Hopfield Networks for the Identification of Therapeutic Targets for Cancer

Thumbnail
Ver/
https://revistas.tec.ac.cr/index.php/memorias/article/view/451510.18845/mct.v0i0.4515
Autor
Calderón-Achío, Olger
Siles-Canales, Francisco
Metadatos
Mostrar el registro completo del ítem
Descripción
Cancer currently constitutes both a national and worldwide health problem for the human population. General scientific effort has been directed towards improving targeted and personalized therapy, which are characterized by making an intelligent use of the patient’s genomic blueprint in order to make more informed treatment decisions. NIH’s project, Genomic Data Commons (GDC), provides an openly available online data repository which stores great diversity of cancer related data from different cases (patients). This study leverages patterns found in gene expression data for the identification of potential therapeutic targets. Data was restricted to highly expressed genes from cases of breast invasive carcinoma. A Hopfield network (a type of recurrent neural network) was used for clustering purposes. Preliminary tests subdivided the cases into two clusters, where four highly expressed genes better characterized one cluster from the other. Some of these genes are reported in the literature, indeed, as biomarkers for breast cancer. These results suggest that attractor states of Hopfield networks might provide means for discovering or better understanding potential therapeutic targets when treating a particular cancer subtype. Index Terms—Cancer, Therapeutic Targets, Neural Networks, Machine Learning, Pattern Recognition, Bioinformatics.
Fuente
Memorias de congresos TEC; 2017: III Jornadas Costarricenses de Investigación en Computación e Informática , 9978-9930 , 10.18845/mct.2017.0 .
URI
http://hdl.handle.net/2238/13108
Compartir
       
Métricas
Colecciones
  • Portal de Memorias de Congresos [68]

|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1