Tecnológico de Costa Rica
  • How to publish in Repositorio TEC?
  • Policies
  • Educational Resources
  • Contact us
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • View Item
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended UserThis CollectionBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended User

My Account

LoginRegister

Statistics

View Usage Statistics

A deep learning algorithm to address kinship verification integrating age transformation techniques applied to the family images and model tuning methodologies

Thumbnail
View/Open
TF10077_BIB314391_Priscilla_Piedra-Hidalgo.pdf (643.9Kb)
Date
2024-11-28
Author
Piedra-Hidalgo, Priscilla
Metadata
Show full item record
Abstract
This thesis addresses the challenge of verifying familial relationships through facial features, which is often complicated by age-related variations. Traditional kinship verification models struggle to account for these changes, resulting in decreased accuracy. Accurate kinship verification is crucial for various applications, including forensic investigations, family reunion efforts, and social media analysis to mention some implementations of kinship verification. However, traditional kinship verification models struggle to account for these changes, resulting in decreased accuracy. To tackle this, the objective was to enhance kinship verification by integrating age transformation techniques into a deep learning model. The proposed solution involved applying the LATS (Learnable Age Transformation Synthesis) algorithm to transform images into different age ranges, making familial traits more recognizable. A deep learning model using a Siamese network architecture was trained on the Families in the Wild (FIW) dataset, with age transformations applied at 5, 15, and 30 years to address the model’s ability to identify kinship relationships of mother, father and children. The model was evaluated using accuracy, F1-score, and Mean Squared Error (MSE) across different transformation scenarios. The results showed an overall accuracy of 87 %, with the best performance in father-children relationships at a 5-year transformation and in mother-children relationships at a 15-year transformation, demonstrating the model’s effectiveness in capturing age-specific familial traits.
Description
Proyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2024.
URI
https://hdl.handle.net/2238/16404
Share
       
Metrics
Collections
  • Maestría en Computación [113]

|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1