Tecnológico de Costa Rica
  • ¿Cómo publicar en el Repositorio TEC?
  • Políticas
  • Recursos Educativos
  • Contáctenos
    • español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Página Principal
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • Ver ítem
  •   Página Principal
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatarioEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatario

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

A deep learning algorithm to address kinship verification integrating age transformation techniques applied to the family images and model tuning methodologies

Thumbnail
Ver/
TF10077_BIB314391_Priscilla_Piedra-Hidalgo.pdf (643.9Kb)
Fecha
2024-11-28
Autor
Piedra-Hidalgo, Priscilla
Metadatos
Mostrar el registro completo del ítem
Resumen
This thesis addresses the challenge of verifying familial relationships through facial features, which is often complicated by age-related variations. Traditional kinship verification models struggle to account for these changes, resulting in decreased accuracy. Accurate kinship verification is crucial for various applications, including forensic investigations, family reunion efforts, and social media analysis to mention some implementations of kinship verification. However, traditional kinship verification models struggle to account for these changes, resulting in decreased accuracy. To tackle this, the objective was to enhance kinship verification by integrating age transformation techniques into a deep learning model. The proposed solution involved applying the LATS (Learnable Age Transformation Synthesis) algorithm to transform images into different age ranges, making familial traits more recognizable. A deep learning model using a Siamese network architecture was trained on the Families in the Wild (FIW) dataset, with age transformations applied at 5, 15, and 30 years to address the model’s ability to identify kinship relationships of mother, father and children. The model was evaluated using accuracy, F1-score, and Mean Squared Error (MSE) across different transformation scenarios. The results showed an overall accuracy of 87 %, with the best performance in father-children relationships at a 5-year transformation and in mother-children relationships at a 15-year transformation, demonstrating the model’s effectiveness in capturing age-specific familial traits.
Descripción
Proyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2024.
URI
https://hdl.handle.net/2238/16404
Compartir
       
Métricas
Colecciones
  • Maestría en Computación [113]

|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1