Tecnológico de Costa Rica
  • How to publish in Repositorio TEC?
  • Policies
  • Educational Resources
  • Contact us
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • View Item
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended UserThis CollectionBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended User

My Account

LoginRegister

Statistics

View Usage Statistics

Guided data augmentation by transfer function (GUIDATFUN)

Thumbnail
View/Open
TF10086_BIB314546_Barnum_Franco_Castillo-Barquero.pdf (18.46Mb)
Date
2024-08-29
Author
Castillo-Barquero, Barnum Franco
Metadata
Show full item record
Abstract
Deep Learning models are used in a wide variety of contexts, one of which is the classification of medical images for the diagnosis or detection of deceases. For the models to perform adequately great amounts of data to train them are needed, nonetheless the lack of labeled data in the medical field is noticeable due to the scarcity of medical professionals. To solve this other approaches lean on transfer learning to gather data from different sources but often the distribution between the clusters of data is too different causing accuracy issues for the models. To solve the distribution mismatch this study proposes a scoring base data augmentation policy called GUIDATFUN that measures the relatedness between the source and the target datasets and then a transfer function assigns an augmentation probability to the source images. The approach was tested with four different transfer functions in the context of chest X-ray images binary classification, the results showed that a supervised deep learning model trained with the data generated employing the GUIDATFUN method measured with statistical significance with a higher accuracy in comparison to trained with regular data in the context of domain adaptation for medical images.
Description
 
Proyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2024.
 
Esta tesis cumple con el objetivo ODS 3: asegurar una vida sana y promover el bienestar de todas las personas en todas las edades. Meta 4: reducir en un tercio la mortalidad prematura por enfermedades no transmisibles mediante la prevención y el tratamiento y promover la salud mental y el bienestar.
 
URI
https://hdl.handle.net/2238/16414
Share
       
Metrics
Collections
  • Maestría en Computación [117]

|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1