Tecnológico de Costa Rica
  • ¿Cómo publicar en el Repositorio TEC?
  • Políticas
  • Recursos Educativos
  • Contáctenos
    • español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Página Principal
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • Ver ítem
  •   Página Principal
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatarioEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatario

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

A Texture and Curvature Bimodal Leaf Recognition Model for Costa Rican Plant Species Identification

Thumbnail
Ver/
texture_curvature_bimodal_species.pdf (14.44Mb)
Fecha
2014
Autor
Carranza, Jose
Metadatos
Mostrar el registro completo del ítem
Resumen
In the last decade, research in Computer Vision has developed algorithms to help botanists and non-experts classify plants based on images of their leaves. Nevertheless, very few efficient tools have resulted from that research and have actually been used in the field. The most popular system to date is LeafSnap. It is considered a state-of-the art leaf recognition mobile application. It uses a multi scale curvature model of the leaf margin to classify leaf images into species. LeafSnap was applied to 184 tree species from Northeast US and achieved high levels of accuracy for that group of trees. In this document, we extend the research that led to the development of LeafSnap along several lines. First, LeafSnap’s underlying algorithms are applied to a set of species from Costa Rica. Then, texture is used as an additional criteria in order to improve the level of accuracy of LeafSnap’s original algorithms. Thus, the main goal of this research is to measure the level of improvement in automatic Costa Rican tree species identification achieved when texture analysis is added to the curvature model of margins of leaves. Our results confirm our hypothesis since the level of improvement reaches a 0.168 for the Costa Rican clean subset, and 0.431 for the Costa Rican noisy subset. In both cases, our results show this increment as statistically significant.
Descripción
Proyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2014.
URI
https://hdl.handle.net/2238/3913
Compartir
       
Métricas
Colecciones
  • Maestría en Computación [108]

|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1