Using migratable objects to enhance fault tolerance schemes in supercomputers
Date
2015-07Author
Mendes, Celso
Meneses-Rojas, Esteban
Xiang, Ni
Gengbin, Zheng
Metadata
Show full item recordAbstract
Supercomputers have seen an exponential increase in their size in the last two decades. Such a high growth rate is expected to take us to exascale in the timeframe 2018-2022. But, to bring a productive exascale environment about, it is necessary to focus on several key challenges. One of those challenges is fault tolerance. Machines at extreme scale will experience frequent failures and will require the system to avoid or overcome those failures. Various techniques have recently been developed to tolerate failures. The impact of these techniques and their scalability can be substantially enhanced by a parallel programming model called migratable objects. In this paper, we demonstrate how the migratable-objects model facilitates and improves several fault tolerance approaches. Our experimental results on thousands of cores suggest fault tolerance schemes based on migratable objects have low performance overhead and high scalability. Additionally, we present a performance model that predicts a significant benefit of using migratable objects to provide fault tolerance at extreme scale.
Source
IEEE Transactions on Parallel and Distribute Systems, Vol. 26, no. 7, JULY 2015Share
Metrics
Collections
- Artículos [19]
The following license files are associated with this item: