Tecnológico de Costa Rica
  • How to publish in Repositorio TEC?
  • Policies
  • Educational Resources
  • Contact us
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • View Item
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended UserThis CollectionBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended User

My Account

LoginRegister

Statistics

View Usage Statistics

Modelo predictivo de exito académico aplicando algoritmos de aprendizaje de máquina sobre interacciones en el TEC Digital

Thumbnail
View/Open
modelo_predictivo_exito_academico_algoritmos.pdf (5.550Mb)
Date
2017
Author
Navas-Sú, José Dolores
Metadata
Show full item record
Abstract
Machine learning and data mining have many applications in the educational field. In particular, in the design of predictive models from massive data records related to learning process. In the present work, several predictive models of academic success are designed and evaluated, in order to create support tools for early intervention on cases of academic failure. These Ad hoc models were designed for the TEC Digital’s educational platform. The machine learning algorithms used are Logistic Regression, Support Vector Machines and Neural Networks. The input dataset to the compared models consists of student’s interactions within TEC Digital’s educational platform. The best results obtained correspond to the algorithm of Neural Networks, but it weren’t found the parameters nor the levels of complexity to adjust models that predict with an accuracy greater than 80 %, the students who are most likely to fail a course.
Description
Proyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2017.
URI
https://hdl.handle.net/2238/9389
Share
       
Metrics
Collections
  • Maestría en Computación [108]

|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1