Tecnológico de Costa Rica
  • ¿Cómo publicar en el Repositorio TEC?
  • Políticas
  • Recursos Educativos
  • Contáctenos
    • español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Página Principal
  • Escuelas y Departamentos
  • Escuela de Ingeniería Electrónica
  • Artículos
  • Ver ítem
  •   Página Principal
  • Escuelas y Departamentos
  • Escuela de Ingeniería Electrónica
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatarioEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatario

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Estimating self-assessed personality from body movements and proximity in crowded mingling scenarios

Thumbnail
Ver/
estimating_self-assessed_personality_body_movements_proximity_crowded_mingling_scenarios.pdf (1.977Mb)
https://delivery.acm.org/10.1145/3000000/2993170/p238-cabreraquiros.pdf?ip=181.193.125.19&id=2993170&acc=ACTIVE%20SERVICE&key=842BC1E250410AEB%2EFDB887D4E02C11F2%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1522701506_a0f7c21f9899b9d535cac7d00a6e800b
Fecha
2016
Autor
Cabrera-Quiros, Laura
Gedik, Ekin
Hung, Hayley
Metadatos
Mostrar el registro completo del ítem
Resumen
This paper focuses on the automatic classi cation of self- assessed personality traits from the HEXACO inventory du- ring crowded mingle scenarios. We exploit acceleration and proximity data from a wearable device hung around the neck. Unlike most state-of-the-art studies, addressing per- sonality estimation during mingle scenarios provides a cha- llenging social context as people interact dynamically and freely in a face-to-face setting. While many former studies use audio to extract speech-related features, we present a novel method of extracting an individual's speaking status from a single body worn triaxial accelerometer which scales easily to large populations. Moreover, by fusing both speech and movement energy related cues from just acceleration, our experimental results show improvements on the estima- tion of Humility over features extracted from a single behav- ioral modality. We validated our method on 71 participants where we obtained an accuracy of 69% for Honesty, Consci- entiousness and Openness to Experience. To our knowledge, this is the largest validation of personality estimation carried out in such a social context with simple wearable sensors.
Descripción
Artículo
Fuente
ICMI 2016 - Proceedings of the 18th ACM International Conference on Multimodal Interaction
URI
https://hdl.handle.net/2238/9667
DOI
10.1145/2993148.2993170
Compartir
       
Métricas
Colecciones
  • Artículos [13]

|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1