Tecnológico de Costa Rica
  • ¿Cómo publicar en el Repositorio TEC?
  • Políticas
  • Recursos Educativos
  • Contáctenos
    • español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Página Principal
  • Escuelas y Departamentos
  • Escuela de Ingeniería en Computación
  • Artículos
  • Ver ítem
  •   Página Principal
  • Escuelas y Departamentos
  • Escuela de Ingeniería en Computación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatarioEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatario

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Automated plant species identification: Challenges and Opportunities

Thumbnail
Ver/
automated_plant_species_identification _challenges.pdf (166.7Kb)
https://link.springer.com/chapter/10.1007/978-3-319-44447-5_3
Fecha
2016
Autor
Mata-Montero, Erick
Carranza-Rojas, Jose
Metadatos
Mostrar el registro completo del ítem
Resumen
The number of species of macro organisms on the planet is estimated at about 10 million. This staggering diversity and the need to better understand it led inevitably to the development of classification schemes called biological taxonomies. Unfortunately, in addition to this enormous diversity, the traditional identification and classification workflows are both slow and error-prone; classification expertise is in the hands of a small number of expert taxonomists; and to make things worse, the number of taxonomists has steadily declined in recent years. Automated identification of organisms has therefore become not just a long time desire but a need to better understand, use, and save biodiversity. This paper presents a survey of recent efforts to use computer vision and machine learning techniques to identify organisms. It focuses on the use of leaf images to identify plant species. In addition, it presents the main technical and scientific challenges as well as the opportunities for herbaria and cybertaxonomists to take a quantum leap towards identifying biodiversity efficiently and empowering the general public by putting in their hands automated identification tools.
Descripción
Conferencia
Fuente
IFIP Advances in Information and Communication Technology
URI
https://hdl.handle.net/2238/9684
DOI
10.1007/978-3-319-44447-5_3
Compartir
       
Métricas
Colecciones
  • Artículos [19]

|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1