Analysis of source separation algorithms in industrial acoustic environments
Fecha
2015Autor
Lozano, Clevis
Gómez, Andrés
Chacón-Rodríguez, Alfonso
Merchán, Fernando
Julián, Pedro
Metadatos
Mostrar el registro completo del ítemResumen
This paper shows the results from the computation cost evaluation of three blind source separation algorithms. The algorithms tested were: FastICA, Adaptive Algorithm Based on Natural Gradient, and Adaptive EASI Based on Relative Gradient. The algorithms were chosen for their relative simplicity, and taking into account their hardware implementation feasibility, either on a FPGA or an ASIC, as part of a system for acoustic localization of mobile agents in industrial environments.
Fuente
C. Lozano, A. Gómez, A. Chacón-Rodríguez, F. Merchán, & P. Julian. (2015). Analysis of source separation algorithms in industrial acoustic environments. Paper presented at the 2015 IEEE 6th Latin American Symposium on Circuits & Systems (LASCAS), 1-4. doi:10.1109/LASCAS.2015.7250482Compartir
Métricas
Colecciones
- Artículos [19]
El ítem tiene asociados los siguientes ficheros de licencia: