| dc.contributor.advisor | Torres-Rojas, Francisco J. | es |
| dc.contributor.author | Morales-Esquivel, Sergio | |
| dc.date.accessioned | 2016-12-12T18:14:22Z | |
| dc.date.available | 2016-12-12T18:14:22Z | |
| dc.date.issued | 2016-10 | |
| dc.identifier.uri | https://hdl.handle.net/2238/6761 | |
| dc.description | Proyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2016. | es |
| dc.description.abstract | Numerous tools and techniques have been used to and and study extrasolar planets,
but none has been more successful than NASA's Kepler Space Telescope, which has
discovered the majority of known exoplanets. Not only that, but the mission's data
has been made available in an open format, allowing for independent efforts to not only
and new exoplanet candidates. | es |
| dc.language.iso | spa | es |
| dc.publisher | Instituto Tecnológico de Costa Rica. | es |
| dc.rights | acceso abierto | es |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
| dc.subject | Boosting, | es |
| dc.subject | Bagging, | es |
| dc.subject | MODLEM, | es |
| dc.subject | Kepler | es |
| dc.title | Evaluación de Métodos Agregados de Aprendizaje de Máquina: Aplicación sobre datos de la misión Kepler | es |
| dc.type | tesis de maestría | es |