Show simple item record

dc.contributor.advisorTorres-Rojas, Francisco J.es
dc.contributor.authorMorales-Esquivel, Sergio
dc.date.accessioned2016-12-12T18:14:22Z
dc.date.available2016-12-12T18:14:22Z
dc.date.issued2016-10
dc.identifier.urihttps://hdl.handle.net/2238/6761
dc.descriptionProyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2016.es
dc.description.abstractNumerous tools and techniques have been used to and and study extrasolar planets, but none has been more successful than NASA's Kepler Space Telescope, which has discovered the majority of known exoplanets. Not only that, but the mission's data has been made available in an open format, allowing for independent efforts to not only and new exoplanet candidates.es
dc.language.isospaes
dc.publisherInstituto Tecnológico de Costa Rica.es
dc.rightsacceso abiertoes
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectBoosting,es
dc.subjectBagging,es
dc.subjectMODLEM,es
dc.subjectKepleres
dc.titleEvaluación de Métodos Agregados de Aprendizaje de Máquina: Aplicación sobre datos de la misión Kepleres
dc.typetesis de maestríaes


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

acceso abierto
Except where otherwise noted, this item's license is described as acceso abierto