Tecnológico de Costa Rica
  • How to publish in Repositorio TEC?
  • Policies
  • Educational Resources
  • Contact us
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería Electrónica
  • Maestría en Electrónica
  • View Item
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería Electrónica
  • Maestría en Electrónica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended UserThis CollectionBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended User

My Account

LoginRegister

Statistics

View Usage Statistics

Reconocimiento de pose estática de manos en imágenes de profundidad

Thumbnail
View/Open
reconocimiento_pose_estatica_manos_imagenes.pdf (1.627Mb)
Date
2015
Author
Madrigal-Solano, Marco
Metadata
Show full item record
Abstract
With the increasing usage of new technologies in common daily activities, the demand of efficient human-computer interaction (HCI) systems increases. Hand pose recognition systems have been widely explored for such task due to its intuitive operation for non experienced users. However, vision-based hand pose recognition is a extremely challenging problem due to the dynamics of the hand, which poses a large amount of degrees of freedom that makes it difficult to estimate and carries out additional problems such as self occlusion. With the development of reliable and consumer affordable vision systems such as the Microsoft Kinect©, depth imaging has become a useful tool on body parts recognition and thus, for hand recognition. This thesis proposes a static hand pose classification system based on depth images only and considering a top view perspective. No additional constrains to the hand position on the scene are imposed, which allows background objects to be closer to the camera than the hand itself. A synthetically generated data set of four hand postures (open, pointing, fist and pinch) is used. The proposed design is divided in two processing stages: hand segmentation and hand pose classification. The hand segmentation stage uses a random decision forest (RDF) for per-pixel classification of the depth images, segmenting the hand in arm, palm and fingers regions. Hand pose classification is then performed using a defined set of visual features from the labeled blobs. Seven visual features are evaluated in terms of classification accuracy. Two types of classifiers are trained for the pose estimation: random decision forests and support vector machine (SVM) for evaluation purposes. The system proposed provides a 91% of classification accuracy for the defined hand poses on the generated data.
Description
Proyecto de Graduación (Maestría en Electrónica) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Electrónica, 2015.
URI
https://hdl.handle.net/2238/7141
Share
       
Metrics
Collections
  • Maestría en Electrónica [49]

|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1