Tecnológico de Costa Rica
  • How to publish in Repositorio TEC?
  • Policies
  • Educational Resources
  • Contact us
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • View Item
  •   Repository Home
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended UserThis CollectionBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended User

My Account

LoginRegister

Statistics

View Usage Statistics

Modelo para la identificación de deuda técnica de documentación en ambientes de desarrollo de software ágiles

Thumbnail
View/Open
modelo_identificacion_deuda_tecnica_documentacion.pdf (3.834Mb)
Date
2017
Author
Cascante-Saborío, Kenneth Alberto
Metadata
Show full item record
Abstract
This research is about a model that identifies and evaluates technical documentation debt in agile software development projects, using a Natural Language Processing (NLP) based tool called AQUSA+. The tool analyzes a set of user stories syntactically and pragmatically through their three main components: title, description and acceptance criteria. It allows the user to load a file and then display all the errors that need to be corrected in their textual composition, which may lead to technical debt accumulation. To validate the performance, AQUSA+ scores were compared to the ones of a set of experts, who used the same sample of user stories and the same evaluation rubric, in order to standardize the values of each quality criteria score. The final score for each evaluator was graphically displayed, in order to statistically compare it to the one from the tool. Also, a benchmark with a set of user stories with no errors was run on the tool to analyze any unexpected behavior. The evaluations and the benchmark allowed us to identify false positives, and thus to calculate the precision of the tool
Description
Proyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2017.
URI
https://hdl.handle.net/2238/9391
Share
       
Metrics
Collections
  • Maestría en Computación [108]

|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1