Tecnológico de Costa Rica
  • How to publish in Repositorio TEC?
  • Policies
  • Educational Resources
  • Contact us
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Repository Home
  • Escuelas y Departamentos
  • Escuela de Ingeniería Electrónica
  • Artículos
  • View Item
  •   Repository Home
  • Escuelas y Departamentos
  • Escuela de Ingeniería Electrónica
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended UserThis CollectionBy Issue DateAuthorsTitlesKeywordEducational Resource TypeIntended User

My Account

LoginRegister

Statistics

View Usage Statistics

Estimating self-assessed personality from body movements and proximity in crowded mingling scenarios

Thumbnail
View/Open
estimating_self-assessed_personality_body_movements_proximity_crowded_mingling_scenarios.pdf (1.977Mb)
https://delivery.acm.org/10.1145/3000000/2993170/p238-cabreraquiros.pdf?ip=181.193.125.19&id=2993170&acc=ACTIVE%20SERVICE&key=842BC1E250410AEB%2EFDB887D4E02C11F2%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1522701506_a0f7c21f9899b9d535cac7d00a6e800b
Date
2016
Author
Cabrera-Quiros, Laura
Gedik, Ekin
Hung, Hayley
Metadata
Show full item record
Abstract
This paper focuses on the automatic classi cation of self- assessed personality traits from the HEXACO inventory du- ring crowded mingle scenarios. We exploit acceleration and proximity data from a wearable device hung around the neck. Unlike most state-of-the-art studies, addressing per- sonality estimation during mingle scenarios provides a cha- llenging social context as people interact dynamically and freely in a face-to-face setting. While many former studies use audio to extract speech-related features, we present a novel method of extracting an individual's speaking status from a single body worn triaxial accelerometer which scales easily to large populations. Moreover, by fusing both speech and movement energy related cues from just acceleration, our experimental results show improvements on the estima- tion of Humility over features extracted from a single behav- ioral modality. We validated our method on 71 participants where we obtained an accuracy of 69% for Honesty, Consci- entiousness and Openness to Experience. To our knowledge, this is the largest validation of personality estimation carried out in such a social context with simple wearable sensors.
Description
Artículo
Source
ICMI 2016 - Proceedings of the 18th ACM International Conference on Multimodal Interaction
URI
https://hdl.handle.net/2238/9667
DOI
10.1145/2993148.2993170
Share
       
Metrics
Collections
  • Artículos [13]

|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contact us

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1