Mostrar el registro sencillo del ítem

dc.contributor.advisorCalderón-Ramírez, Saúles
dc.contributor.authorCastillo-Barquero, Barnum Franco
dc.date.accessioned2025-11-03T22:19:09Z
dc.date.available2025-11-03T22:19:09Z
dc.date.issued2024-08-29
dc.identifier.urihttps://hdl.handle.net/2238/16414
dc.descriptionProyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2024.es
dc.descriptionEsta tesis cumple con el objetivo ODS 3: asegurar una vida sana y promover el bienestar de todas las personas en todas las edades. Meta 4: reducir en un tercio la mortalidad prematura por enfermedades no transmisibles mediante la prevención y el tratamiento y promover la salud mental y el bienestar.
dc.description.abstractDeep Learning models are used in a wide variety of contexts, one of which is the classification of medical images for the diagnosis or detection of deceases. For the models to perform adequately great amounts of data to train them are needed, nonetheless the lack of labeled data in the medical field is noticeable due to the scarcity of medical professionals. To solve this other approaches lean on transfer learning to gather data from different sources but often the distribution between the clusters of data is too different causing accuracy issues for the models. To solve the distribution mismatch this study proposes a scoring base data augmentation policy called GUIDATFUN that measures the relatedness between the source and the target datasets and then a transfer function assigns an augmentation probability to the source images. The approach was tested with four different transfer functions in the context of chest X-ray images binary classification, the results showed that a supervised deep learning model trained with the data generated employing the GUIDATFUN method measured with statistical significance with a higher accuracy in comparison to trained with regular data in the context of domain adaptation for medical images.es
dc.language.isoenges
dc.publisherInstituto Tecnológico de Costa Ricaes
dc.rightsacceso abiertoes
dc.subjectAprendizaje profundo (Aprendizaje automático)es
dc.subjectImágenes médicas digitaleses
dc.subjectDatos etiquetadoses
dc.subjectModelos -- Aprendizajees
dc.subjectDetección -- Enfermedadeses
dc.subjectRayos X -- Imágeneses
dc.subjectProcesamiento de datoses
dc.subjectDeep learning (Machine Learning)es
dc.subjectDigital medical imageses
dc.subjectData labelinges
dc.subjectModels -- Learninges
dc.subjectDetection -- Diseaseses
dc.subjectX-rays -- Imageses
dc.subjectData processinges
dc.subjectResearch Subject Categories::TECHNOLOGY::Information technology::Computer sciencees
dc.titleGuided data augmentation by transfer function (GUIDATFUN)es
dc.typetesis de maestríaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem