Tecnológico de Costa Rica
  • ¿Cómo publicar en el Repositorio TEC?
  • Políticas
  • Recursos Educativos
  • Contáctenos
    • español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Página Principal
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • Ver ítem
  •   Página Principal
  • Trabajos de Graduación
  • Biblioteca José Figueres Ferrer
  • Escuela de Ingeniería en Computación
  • Maestría en Computación
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatarioEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clavesTipo de Recurso EducativoDestinatario

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Modelo predictivo de exito académico aplicando algoritmos de aprendizaje de máquina sobre interacciones en el TEC Digital

Thumbnail
Ver/
modelo_predictivo_exito_academico_algoritmos.pdf (5.550Mb)
Fecha
2017
Autor
Navas-Sú, José Dolores
Metadatos
Mostrar el registro completo del ítem
Resumen
Machine learning and data mining have many applications in the educational field. In particular, in the design of predictive models from massive data records related to learning process. In the present work, several predictive models of academic success are designed and evaluated, in order to create support tools for early intervention on cases of academic failure. These Ad hoc models were designed for the TEC Digital’s educational platform. The machine learning algorithms used are Logistic Regression, Support Vector Machines and Neural Networks. The input dataset to the compared models consists of student’s interactions within TEC Digital’s educational platform. The best results obtained correspond to the algorithm of Neural Networks, but it weren’t found the parameters nor the levels of complexity to adjust models that predict with an accuracy greater than 80 %, the students who are most likely to fail a course.
Descripción
Proyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2017.
URI
https://hdl.handle.net/2238/9389
Compartir
       
Métricas
Colecciones
  • Maestría en Computación [108]

|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1

 

 


|Contáctenos

Repositorio Institucional del Tecnológico de Costa Rica

Sistema de Bibliotecas del TEC | SIBITEC

© DERECHOS RESERVADOS. Un sitio soportado por DSpace(v. 6.3)

RT-1