Mostrar el registro sencillo del ítem

dc.contributor.advisorChacón-Rivas, Marioes
dc.contributor.authorNavas-Sú, José Dolores
dc.date.accessioned2018-02-16T17:00:49Z
dc.date.available2018-02-16T17:00:49Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/2238/9389
dc.descriptionProyecto de Graduación (Maestría en Computación) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Computación, 2017.es
dc.description.abstractMachine learning and data mining have many applications in the educational field. In particular, in the design of predictive models from massive data records related to learning process. In the present work, several predictive models of academic success are designed and evaluated, in order to create support tools for early intervention on cases of academic failure. These Ad hoc models were designed for the TEC Digital’s educational platform. The machine learning algorithms used are Logistic Regression, Support Vector Machines and Neural Networks. The input dataset to the compared models consists of student’s interactions within TEC Digital’s educational platform. The best results obtained correspond to the algorithm of Neural Networks, but it weren’t found the parameters nor the levels of complexity to adjust models that predict with an accuracy greater than 80 %, the students who are most likely to fail a course.es
dc.description.sponsorshipInstituto Tecnológico de Costa Ricaes
dc.language.isospaes
dc.publisherInstituto Tecnológico de Costa Ricaes
dc.subjectMinería de datoses
dc.subjectAplicacioneses
dc.subjectEnseñanzaes
dc.subjectPlataformaes
dc.subjectAlgoritmoes
dc.titleModelo predictivo de exito académico aplicando algoritmos de aprendizaje de máquina sobre interacciones en el TEC Digitales
dc.typetesis de maestríaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem